Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572431

RESUMO

Zinc oxide nanoparticles (ZnO NPs) are applied in various applications in catalysis, biosensing, imaging, and as antibacterial agents. Here we to prepare ZnO nanomaterials decorated by γ-amino butyric acid (GABA), curcumin derivatives (CurBF2) and silver nanoparticles (CurBF2-AgNPs). The structures of all ZnO nanostructures were characterized using Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), UV-VIS spectrophotometry, fluorescence spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HR-TEM). Further, their antibacterial activities against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria were investigated through analysis of minimum inhibitory concentration (MIC) method. Among the prepared nanostructures, the ZnO NPs-GABA/CurBF2-AgNPs showed excellent antibacterial activity against both Gram-positive and -negative bacteria. ZnO NPs fabricated here may have potential use in future anti-bacterial compositions and coatings technologies.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119433, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33465574

RESUMO

In this work, we report the synthesis of silver nanoparticles (AgNPs) via a wet-chemical reduction procedure using citrate (Cit) and γ-aminobutyric acid (GABA) as stabilizers. The formation of GABA-Cit@AgNPs was confirmed by UV-vis spectroscopy with a surface plasmon resonance band at 393 nm clearly confirming the formation of silver nanoparticles. AgNPs were characterized using UV-vis spectroscopy, attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), transmission electron microscope (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), dynamic light scattering (DLS), and zeta potential. The as-prepared AgNPs can be used for the detection of hazardous mercury ions (Hg2+) in water by colorimetric method with a limit of detection (LOD) and limit of quantitation (LOQ) of 2.37 µM and 3.99 µM, respectively. The linear working range for Hg2+ detection is 5-35 µM and the sensor probe was applied to investigate Hg2+ in real drinking water samples with satisfied results. Rapid response to Hg2+ is also observed when the nanoparticles are composited within hydrogels. Moreover, GABA-Cit@AgNPs shows antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The fast and sensitive response of the proposed Hg2+ sensor, together with its antibacterial activities, makes GABA-Cit@AgNPs potentially applicable for the development of cheap, portable, colorimetric sensors in fieldwork.


Assuntos
Mercúrio , Nanopartículas Metálicas , Antibacterianos/farmacologia , Colorimetria , Escherichia coli , Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Água , Ácido gama-Aminobutírico
3.
Artigo em Inglês | MEDLINE | ID: mdl-29428898

RESUMO

A fluorescent sensor based on thioglycolic acid-capped cadmium sulfide quantum dots (TGA-CdS QDs) has been designed for the sensitive and selective detection of dopamine (DA). In the presence of dopamine (DA), the addition of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) activates the reaction between the carboxylic group of the TGA and the amino group of dopamine to form an amide bond, quenching the fluorescence of the QDs. The fluorescence intensity of TGA-CdS QDs can be used to sense the presence of dopamine with a limit of detection of 0.68µM and a working linear range of 1.0-17.5µM. This sensor system shows great potential application for dopamine detection in dopamine drug samples and for future easy-to-make analytical devices.


Assuntos
Compostos de Cádmio/química , Dopamina/análise , Neurotransmissores/análise , Pontos Quânticos , Espectrometria de Fluorescência/métodos , Sulfetos/química , Tioglicolatos/química , Etildimetilaminopropil Carbodi-Imida/química , Limite de Detecção , Modelos Lineares , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Succinimidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...