Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biochem ; 175(2): 205-213, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-37963603

RESUMO

TFIIIC is a multi-subunit complex required for tRNA transcription by RNA polymerase III. Human TFIIIC holo-complex possesses lysine acetyltransferase activity that aids in relieving chromatin-mediated repression for RNA polymerase III-mediated transcription and chromatin assembly. Here we have characterized the acetyltransferase activity of the largest and DNA-binding subunit of TFIIIC complex, TFIIIC220. Purified recombinant human TFIIIC220 acetylated core histones H3, H4 and H2A in vitro. Moreover, we have identified the putative catalytic domain of TFIIIC220 that efficiently acetylates core histones in vitro. Mutating critical residues of the putative acetyl-CoA binding 'P loop' drastically reduced the catalytic activity of the acetyltransferase domain. Further analysis showed that the knockdown of TFIIIC220 in mammalian cell lines dramatically reduces global H3K18 acetylation level, which was rescued by overexpression of the putative acetyltransferase domain of human TFIIIC220. Our findings indicated a possibility of a crucial role for TFIIIC220 in maintaining acetylation homeostasis in the cell.


Assuntos
Histonas , Lisina Acetiltransferases , Fatores de Transcrição TFIII , Animais , Humanos , Histonas/metabolismo , Lisina Acetiltransferases/metabolismo , RNA Polimerase III/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Acetilação , Mamíferos
2.
Trends Biochem Sci ; 48(10): 849-859, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37596196

RESUMO

CENP-A is an essential histone variant that replaces the canonical H3 at the centromeres and marks these regions epigenetically. The CENP-A nucleosome is the specific building block of centromeric chromatin, and it is recognized by CENP-C and CENP-N, two components of the constitutive centromere-associated network (CCAN), the first protein layer of the kinetochore. Recent proposals of the yeast and human (h)CCAN structures position the assembly on exposed DNA, suggesting an elusive spatiotemporal recognition. We summarize the data on the structural organization of the CENP-A nucleosome and the binding of CENP-C and CENP-N. The latter posits an apparent contradiction in engaging the CENP-A nucleosome versus the CCAN. We propose a reconciliatory model for the assembly of CCAN on centromeric chromatin.


Assuntos
Cinetocoros , Nucleossomos , Humanos , Proteína Centromérica A , Cromatina , Saccharomyces cerevisiae
3.
J Chem Inf Model ; 63(12): 3839-3853, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37307148

RESUMO

Pioneer transcription factors (PTFs) have the remarkable ability to directly bind to chromatin to stimulate vital cellular processes. In this work, we dissect the universal binding mode of Sox PTF by combining extensive molecular simulations and physiochemistry approaches, along with DNA footprinting techniques. As a result, we show that when Sox consensus DNA is located at the solvent-facing DNA strand, Sox binds to the compact nucleosome without imposing any significant conformational changes. We also reveal that the base-specific Sox:DNA interactions (base reading) and Sox-induced DNA changes (shape reading) are concurrently required for sequence-specific nucleosomal DNA recognition. Among three different nucleosome positions located on the positive DNA arm, a sequence-specific reading mechanism is solely satisfied at the superhelical location 2 (SHL2). While SHL2 acts transparently for solvent-facing Sox binding, among the other two positions, SHL4 permits only shape reading. The final position, SHL0 (dyad), on the other hand, allows no reading mechanism. These findings demonstrate that Sox-based nucleosome recognition is essentially guided by intrinsic nucleosome properties, permitting varying degrees of DNA recognition.


Assuntos
Nucleossomos , Fatores de Transcrição , Fatores de Transcrição/química , DNA/química , Regulação da Expressão Gênica
4.
Structure ; 31(2): 201-212.e5, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36610392

RESUMO

Nucleosomes are symmetric structures. However, binding of linker histones generates an inherently asymmetric H1-nucleosome complex, and whether this asymmetry is transmitted to the overall nucleosome structure, and therefore also to chromatin, is unclear. Efforts to investigate potential asymmetry due to H1s have been hampered by the DNA sequence, which naturally differs in each gyre. To overcome this issue, we designed and analyzed by cryo-EM a nucleosome reconstituted with a palindromic (601L) 197-bp DNA. As in the non-palindromic 601 sequence, H1 restricts linker DNA flexibility but reveals partial asymmetrical unwrapping. However, in contrast to the non-palindromic nucleosome, in the palindromic nucleosome H1 CTD collapses to the proximal linker. Molecular dynamics simulations show that this could be dictated by a slightly tilted orientation of the globular domain (GD) of H1, which could be linked to the DNA sequence of the nucleosome dyad.


Assuntos
Cromatina , Nucleossomos , Ligação Proteica , Histonas/metabolismo , DNA/metabolismo
5.
Photochem Photobiol ; 99(2): 296-312, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35997098

RESUMO

Interactions of DNA with structural proteins such as histones, regulatory proteins and enzymes play a crucial role in major cellular processes such as transcription, replication and repair. The in vivo mapping and characterization of the binding sites of the involved biomolecules are of primary importance for a better understanding of genomic deployment that is implicated in tissue and developmental stage-specific gene expression regulation. The most powerful and commonly used approach to date is immunoprecipitation of chemically cross-linked chromatin (XChIP) coupled with sequencing analysis (ChIP-seq). While the resolution and the sensitivity of the high-throughput sequencing techniques have been constantly improved, little progress has been achieved in the cross-linking step. Because of its low efficiency, the use of the conventional UVC lamps remains very limited while the formaldehyde method was established as the "gold standard" cross-linking agent. Efficient biphotonic cross-linking of directly interacting nucleic acid-protein complexes by a single short UV laser pulse has been introduced as an innovative technique for overcoming limitations of conventionally used chemical and photochemical approaches. In this survey, the main available methods including the laser approach are critically reviewed for their ability to generate DNA-protein cross-links in vitro model systems and cells.


Assuntos
Ácidos Nucleicos , Imunoprecipitação da Cromatina/métodos , DNA/química , Cromatina , Lasers
6.
Curr Opin Struct Biol ; 64: 97-103, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32717688

RESUMO

The three-dimensional (3D) organization of chromatin plays a crucial role in the regulation of gene expression. Chromatin conformation is strongly affected by the composition, structural features and dynamic properties of the nucleosome, which in turn determine the nature and geometry of interactions that can occur between neighboring nucleosomes. Understanding how chromatin is spatially organized above the nucleosome level is thus essential for understanding how gene regulation is achieved. Towards this end, great effort has been made to understand how an array of nucleosomes folds into a regular chromatin fiber. This review summarizes new insights into the 3D structure of the chromatin fiber that were made possible by recent advances in cryo-electron microscopy.


Assuntos
DNA , Nucleossomos , Cromatina , Microscopia Crioeletrônica , Modelos Moleculares
7.
Nucleic Acids Res ; 48(10): 5735-5748, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32313946

RESUMO

The histone H3 variant CENP-A marks centromeres epigenetically and is essential for mitotic fidelity. Previous crystallographic studies of the CENP-A nucleosome core particle (NCP) reconstituted with a human α-satellite DNA derivative revealed both DNA ends to be highly flexible, a feature important for CENP-A mitotic functions. However, recent cryo-EM studies of CENP-A NCP complexes comprising primarily Widom 601 DNA reported well-ordered DNA ends. Here, we report the cryo-EM structure of the CENP-A 601 NCP determined by Volta phase-plate imaging. The data reveal that one ('left') 601 DNA end is well ordered whereas the other ('right') end is flexible and partly detached from the histone core, suggesting sequence-dependent dynamics of the DNA termini. Indeed, a molecular dynamics simulation of the CENP-A 601 NCP confirmed the distinct dynamics of the two DNA extremities. Reprocessing the image data using two-fold symmetry yielded a cryo-EM map in which both DNA ends appeared well ordered, indicating that such an artefact may inadvertently arise if NCP asymmetry is lost during image processing. These findings enhance our understanding of the dynamic features that discriminate CENP-A from H3 nucleosomes by revealing that DNA end flexibility can be fine-tuned in a sequence-dependent manner.


Assuntos
Proteína Centromérica A/química , DNA/química , Nucleossomos/química , Microscopia Crioeletrônica , Humanos , Simulação de Dinâmica Molecular , Nucleossomos/ultraestrutura
8.
J Biochem ; 167(2): 195-201, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31665313

RESUMO

Aurora kinases are Ser/Thr-directed protein kinases which play pivotal roles in mitosis. Recent evidences highlight the importance of these kinases in multiple biological events including skeletal muscle differentiation. Our earlier study identified the transcription factor POU6F1 (or mPOU) as a novel Aurora kinase (Aurk) A substrate. Here, we report that Aurora kinase A phosphorylates mPOU at Ser197 and inhibit its DNA-binding ability. Delving into mPOU physiology, we find that the phospho-mimic (S197D) mPOU mutant exhibits enhancement, while the wild type or the phospho-deficient mutant shows retardation in C2C12 myoblast differentiation. Interestingly, POU6F1 depletion phenocopies S197D-mPOU overexpression in the differentiation context. Collectively, our results signify mPOU as a negative regulator of skeletal muscle differentiation and strengthen the importance of AurkA in skeletal myogenesis.


Assuntos
Aurora Quinase A/metabolismo , Diferenciação Celular , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Fatores do Domínio POU/metabolismo , Células HEK293 , Humanos , Mutação , Fatores do Domínio POU/genética , Fosforilação
9.
Sci Rep ; 9(1): 14212, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578361

RESUMO

Chromatin remodelers are complexes able to both alter histone-DNA interactions and to mobilize nucleosomes. The mechanism of their action and the conformation of remodeled nucleosomes remain a matter of debates. In this work we compared the type and structure of the products of nucleosome remodeling by SWI/SNF and ACF complexes using high-resolution microscopy combined with novel biochemical approaches. We find that SWI/SNF generates a multitude of nucleosome-like metastable particles termed "remosomes". Restriction enzyme accessibility assay, DNase I footprinting and AFM experiments reveal perturbed histone-DNA interactions within these particles. Electron cryo-microscopy shows that remosomes adopt a variety of different structures with variable irregular DNA path, similar to those described upon RSC remodeling. Remosome DNA accessibility to restriction enzymes is also markedly increased. We suggest that the generation of remosomes is a common feature of the SWI/SNF family remodelers. In contrast, the ACF remodeler, belonging to ISWI family, only produces repositioned nucleosomes and no evidence for particles associated with extra DNA, or perturbed DNA paths was found. The remosome generation by the SWI/SNF type of remodelers may represent a novel mechanism involved in processes where nucleosomal DNA accessibility is required, such as DNA repair or transcription regulation.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Proteínas Fúngicas/fisiologia , Complexos Multiproteicos/fisiologia , Nucleossomos/fisiologia , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Sistema Livre de Células , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/fisiologia , Pegada de DNA , DNA Bacteriano/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II , Histonas/genética , Histonas/metabolismo , Microscopia de Força Atômica , Nucleossomos/ultraestrutura , Plasmídeos/química , Proteínas de Ligação a RNA/fisiologia , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Xenopus laevis/genética
10.
FASEB J ; 33(1): 219-230, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29995440

RESUMO

Aurora kinases are critical mitotic serine/threonine kinases and are often implicated in tumorigenesis. Recent studies of the interphase functions for aurora kinase (Aurk)A have considerably expanded our understanding of its role beyond mitosis. To identify the unknown targets of AurkA, we used peptide array-based screening and found E2F4 to be a novel substrate. Phosphorylation of E2F4 by AurkA at Ser75 regulates its DNA binding and subcellular localization. Because E2F4 plays an important role in skeletal muscle differentiation, we attempted to gain insight into E2F4 phosphorylation in this context. We observed that a block in E2F4 phosphorylation retained it better within the nucleus and inhibited muscle differentiation. RNA sequencing analysis revealed a perturbation of the gene network involved in the process of muscle differentiation and mitochondrial biogenesis. Collectively, our findings establish a novel role of AurkA in the process of skeletal muscle differentiation.-Dhanasekaran, K., Bose, A., Rao, V. J., Boopathi, R., Shankar, S. R., Rao, V. K., Swaminathan, A., Vasudevan, M., Taneja, R., Kundu, T. K. Unravelling the role of aurora A beyond centrosomes and spindle assembly: implications in muscle differentiation.


Assuntos
Aurora Quinase A/metabolismo , Diferenciação Celular , Centrossomo/metabolismo , Fator de Transcrição E2F4/metabolismo , Músculo Esquelético/citologia , Mioblastos/citologia , Fuso Acromático/metabolismo , Animais , Aurora Quinase A/genética , Ciclo Celular , Células Cultivadas , Fator de Transcrição E2F4/genética , Células HEK293 , Humanos , Camundongos , Mitose , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Fosforilação
11.
Mol Cell ; 72(5): 902-915.e7, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30392928

RESUMO

Chromatin adopts a diversity of regular and irregular fiber structures in vitro and in vivo. However, how an array of nucleosomes folds into and switches between different fiber conformations is poorly understood. We report the 9.7 Å resolution crystal structure of a 6-nucleosome array bound to linker histone H1 determined under ionic conditions that favor incomplete chromatin condensation. The structure reveals a flat two-start helix with uniform nucleosomal stacking interfaces and a nucleosome packing density that is only half that of a twisted 30-nm fiber. Hydroxyl radical footprinting indicates that H1 binds the array in an on-dyad configuration resembling that observed for mononucleosomes. Biophysical, cryo-EM, and crosslinking data validate the crystal structure and reveal that a minor change in ionic environment shifts the conformational landscape to a more compact, twisted form. These findings provide insights into the structural plasticity of chromatin and suggest a possible assembly pathway for a 30-nm fiber.


Assuntos
DNA/química , Histonas/química , Proteína 1 de Modelagem do Nucleossomo/química , Nucleossomos/ultraestrutura , Animais , Sítios de Ligação , Clonagem Molecular , Microscopia Crioeletrônica , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Radical Hidroxila/química , Modelos Moleculares , Proteína 1 de Modelagem do Nucleossomo/genética , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Concentração Osmolar , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenopus laevis
13.
Mol Cell ; 66(3): 384-397.e8, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475873

RESUMO

Linker histones associate with nucleosomes to promote the formation of higher-order chromatin structure, but the underlying molecular details are unclear. We investigated the structure of a 197 bp nucleosome bearing symmetric 25 bp linker DNA arms in complex with vertebrate linker histone H1. We determined electron cryo-microscopy (cryo-EM) and crystal structures of unbound and H1-bound nucleosomes and validated these structures by site-directed protein cross-linking and hydroxyl radical footprinting experiments. Histone H1 shifts the conformational landscape of the nucleosome by drawing the two linkers together and reducing their flexibility. The H1 C-terminal domain (CTD) localizes primarily to a single linker, while the H1 globular domain contacts the nucleosome dyad and both linkers, associating more closely with the CTD-distal linker. These findings reveal that H1 imparts a strong degree of asymmetry to the nucleosome, which is likely to influence the assembly and architecture of higher-order structures.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , DNA/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Animais , Pareamento de Bases , Sítios de Ligação , Cromatina/química , Cromatina/genética , Cromatina/ultraestrutura , Microscopia Crioeletrônica , DNA/química , DNA/genética , Histonas/química , Humanos , Modelos Moleculares , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/ultraestrutura , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Fatores de Tempo , Xenopus laevis/genética , Xenopus laevis/metabolismo
14.
Mol Cell ; 63(4): 674-685, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27499292

RESUMO

CENP-A is a histone variant, which replaces histone H3 at centromeres and confers unique properties to centromeric chromatin. The crystal structure of CENP-A nucleosome suggests flexible nucleosomal DNA ends, but their dynamics in solution remains elusive and their implication in centromere function is unknown. Using electron cryo-microscopy, we determined the dynamic solution properties of the CENP-A nucleosome. Our biochemical, proteomic, and genetic data reveal that higher flexibility of DNA ends impairs histone H1 binding to the CENP-A nucleosome. Substituting the 2-turn αN-helix of CENP-A with the 3-turn αN-helix of H3 results in compact particles with rigidified DNA ends, able to bind histone H1. In vivo replacement of CENP-A with H3-CENP-A hybrid nucleosomes leads to H1 recruitment, delocalization of kinetochore proteins, and significant mitotic and cytokinesis defects. Our data reveal that the evolutionarily conserved flexible ends of the CENP-A nucleosomes are essential to ensure the fidelity of the mitotic pathway.


Assuntos
Autoantígenos/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Mitose/fisiologia , Nucleossomos/metabolismo , Animais , Autoantígenos/genética , Autoantígenos/ultraestrutura , Sítios de Ligação , Proteína Centromérica A , Proteínas Cromossômicas não Histona/deficiência , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/ultraestrutura , Microscopia Crioeletrônica , Citocinese , DNA/química , Genótipo , Células HeLa , Humanos , Cinetocoros/ultraestrutura , Camundongos , Camundongos Knockout , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Nucleossomos/ultraestrutura , Fenótipo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Relação Estrutura-Atividade , Transfecção
15.
FEBS J ; 283(6): 968-85, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26777301

RESUMO

Positive coactivator 4 (PC4), a human transcriptional coactivator, is involved in diverse processes like chromatin organization and transcription regulation. It is hyperphosphorylated during mitosis, with unknown significance. For the first time, we demonstrate the function of PC4 outside the nucleus upon nuclear envelope breakdown. A fraction of PC4 associates with Aurora A and Aurora B and undergoes phosphorylation, following which PC4 activates both Aurora A and B to sustain optimal kinase activity to maintain the phosphorylation gradient for the proper functioning of the mitotic machinery. This mitotic role is evident in PC4 knockdown cells where the defects are rescued only by the catalytically active Aurora kinases, but not the kinase-dead mutants. Similarly, the PC4 phosphodeficient mutant failed to rescue such defects. Hence, our observations establish a novel mitotic function of PC4 that might be dependent on Aurora kinase-mediated phosphorylation.


Assuntos
Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Aurora Quinase A/genética , Aurora Quinase B/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Ativação Enzimática , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Cinética , Mitose/fisiologia , Dados de Sequência Molecular , Fosforilação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética
16.
PLoS One ; 8(10): e75495, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24116050

RESUMO

Persistence of hepatitis C virus (HCV) infection is observed only in a subset of infected individuals and among them only some respond to treatment. Genome-wide association studies (GWAS) carried out around the world identified single nucleotide polymorphisms (SNPs) in the IL28B locus that are strongly associated with both HCV clearance and treatment response. The functional significance of these associations however, is not clear. In this report we show that an SNP rs28416813 in the distal promoter region of IL28B that is in close proximity to a non-consensus NF-κB-binding site affects downstream reporter gene expression. The effect is likely due to differential binding of NF-κB at the non-consensus site. The non-protective allele showed a reduction in luciferase reporter gene expression compared to the protective allele in HEK293T cells under different experimental conditions including treatment with tumor necrosis factor alpha (TNF-α) and 5' triphosphorylated dsRNA. Furthermore, the HCV RNA polymerase was able to induce transcription from the IL28B promoter in a RIG-I-dependent manner. This induction was influenced by the alleles present at rs28416813. We also demonstrate strong linkage disequilibrium between rs28416813 and another important SNP rs12979860 in two ethnic populations. These results suggest possible mechanisms by which SNPs at the IL28B locus influence spontaneous clearance and treatment response in chronic HCV infections.


Assuntos
Hepatite C Crônica/genética , Interleucinas/genética , NF-kappa B/genética , Polimorfismo de Nucleotídeo Único , Transcrição Gênica/genética , Alelos , Estudo de Associação Genômica Ampla , Genótipo , Células HEK293 , Humanos , Interferons , Desequilíbrio de Ligação , Regiões Promotoras Genéticas
17.
Subcell Biochem ; 61: 3-35, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23150244

RESUMO

Genome packaging is a universal phenomenon from prokaryotes to higher mammals. Genomic constituents and forces have however, travelled a long evolutionary route. Both DNA and protein elements constitute the genome and also aid in its dynamicity. With the evolution of organisms, these have experienced several structural and functional changes. These evolutionary changes were made to meet the challenging scenario of evolving organisms. This review discusses in detail the evolutionary perspective and functionality gain in the phenomena of genome organization and epigenetics.


Assuntos
Diferenciação Celular/genética , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Epigênese Genética , Evolução Molecular , Animais , Cromatina/química , Cromatina/genética , DNA/biossíntese , Replicação do DNA , Regulação da Expressão Gênica , Genoma , Histonas/metabolismo , Humanos , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...