Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Total Environ ; 855: 158876, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36152866

RESUMO

Biochar aging affects the stability of soil carbon. Analyzing the effect of biochar on soil organic carbon (SOC) forms and their relations with microbial community assembly and carbon metabolism with time is helpful for soil carbon sequestration (by adapting the farm management approach). Four treatments with no, low, medium, and high biochar application rates (0 %, 1 %, 2 %, and 4 % of the total dry weight of topsoil before winter wheat planting, abbreviated as control, LB, MB, and HB, respectively) were conducted in the field. The SOC and particulate organic carbon positively correlated with the biochar application rate. Biochar decreased readily oxidizable carbon (P < 0.05) after 8 months of application compared to the control; however, the difference disappeared with time. Biochar increased dissolved organic carbon (DOC) but had no effect on water- soluble organic carbon (WSOC); DOC and WSOC decreased with time. Furthermore, LB and HB stabilized the bacterial alpha diversities with time. Based on high-throughput sequencing, HB reduced the relative abundance of Actinobacteriota but increased that of Acidobacteria (P < 0.05) after 12 months of biochar application. Time-wise, the bacterial community assembly was determined by deterministic processes that were significantly affected by the available nitrogen, DOC, or WSOC. Compared with the control, biochar decreased bacterial links and improved bacterial metabolism of phenolic acids and polymers with time, as evidenced by Biolog EcoPlates. Structural equation modeling revealed that the contribution of bacterial assembly processes to carbon metabolism changed with time. Microbial carbon metabolism was most positively influenced by differences in the composition of bacterial specialists. These findings reinforced that changes in soil labile organic carbon were time-dependent but not necessarilty affected by the biochar application rate.


Assuntos
Carbono , Solo , Solo/química , Carvão Vegetal/química , Sequestro de Carbono , Microbiologia do Solo , Bactérias , Água
3.
Biology (Basel) ; 11(7)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-36101333

RESUMO

Plant stress is one of the biggest threats to crops, causing irreparable damage to farmers' incomes; Therefore, finding suitable, affordable, and practical solutions will help the agricultural economy and prevent the loss of millions of tons of agricultural products. Scientists have taken significant steps toward improving farm productivity in the last few decades by discovering how beneficial soil microorganisms enhance plant resistance to environmental stresses. Among these microorganisms is Serendipita indica, which the benefits of coexisting this fungus with plant roots have been extensively explored in recent years. By investigating fungus specification and its effects on plants' morphological, physiological, and molecular traits, the present study seeks to understand how Serendipita indica affects plant resistance to salinity and drought conditions. Furthermore, this study attempts to identify the unknown mechanisms of action of the coexistence of Serendipita indica with plants in the face of stress using information from previous studies. Thus, it provides a way for future research to assess the impact of this fungus on tackling environmental stresses and enhancing agricultural productivity.

4.
J Fungi (Basel) ; 8(2)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35205936

RESUMO

The increasing expansion of mines, factories, and agricultural lands has caused many changes and pollution in soils and water of several parts of the world. In recent years, metal(loid)s are one of the most dangerous environmental pollutants, which directly and indirectly enters the food cycle of humans and animals, resulting in irreparable damage to their health and even causing their death. One of the most important missions of ecologists and environmental scientists is to find suitable solutions to reduce metal(loid)s pollution and prevent their spread and penetration in soil and groundwater. In recent years, phytoremediation was considered a cheap and effective solution to reducing metal(loid)s pollution in soil and water. Additionally, the effect of soil microorganisms on increasing phytoremediation was given special attention; therefore, this study attempted to investigate the role of arbuscular mycorrhizal fungus in the phytoremediation system and in reducing contamination by some metal(loid)s in order to put a straightforward path in front of other researchers.

5.
Plants (Basel) ; 10(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34686019

RESUMO

Arsenic is one of the most hazardous metalloids in nature, and due to its high water solubility, it is one of the most important causes of pollution. However, silicon reduces the uptake and transport of arsenic in rice. This study investigates the interaction of different arsenic and silicon levels on dry weight, protein content, and concentrations of arsenic and silicon in two different rice shoots and roots of Dular wild-type (DU-WT) and Dular Lsi1-overexpressed (DU-OE) rice. It should be noted that all seedlings were subjected to four different treatments. For RNA-seq and qPCR, the DU-WT genotype was selected as the control and DU-OE as the treatment. With the addition of silicone treatment, dry weight and protein content in the shoots and roots of both rice lines were increased, while the concentration of arsenic in these two organs was decreased. When seedlings were exposed to arsenic treatments, protein content, silicon concentration, and dry weight were decreased in both roots and shoots, while arsenic concentration was increased in both rice genotypes. The RNA-seq in DU-OE showed 5823 differentially expressed genes (DEGs), of which 2604 were up-regulated and 3219 down-regulated. Treatment of rice by arsenic and silicon has changed the expression of genes encoding cytokinin-responsive GATA transcription factor 1, protein IN2-1 homolog B, calcium-binding EGF domain-containing protein, Os01g0369700 protein, probable glutathione S-transferase GSTU1, glutathione S-transferase protein, Os09g0367700 protein, isocitrate dehydrogenase (NADP), and Os08g0522400 protein in the root of DU-OE. The present study's findings showed that in the presence of silicon, the transgenic genotype is much more resistant to arsenic than the wild genotype of Dular rice.

6.
J Food Sci ; 86(10): 4405-4416, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34494657

RESUMO

Chinese people have consistentlypreferred high mountain tea because specific flavors are memorable for them, and also, people have traditionally considered this type of tea to be good for health. Tieguanyin is one of the famous traditional Chinese tea that has ever-changing aromas. To illustrate the various characteristics in volatile fragment compounds from Tieguanyin tea, fresh tea leaves collected from different elevations (450, 650, and 900 m) were detected using GC-MS by solid-liquid extraction. The results showed that volatile aromatic compounds, such as benzyl alcohol, phenyl ethanol, and acetophenone, were the most abundant in tea leaves located with high elevation. Meanwhile, 1-hexanol, 1-nananol, and nanoic acid, as a type of aliphatic aroma, were more prevalent in low-elevation tea orchards. Catechols and alkaloids are largely cumulated in low- and high-elevation tea leaves, respectively. Our findings also showed that elemene was widely consisted of high-elevation tea metabolites. It provided practicality for the preparation of tea manufacturing in major Tieguanyin tea-producing regions.


Assuntos
Camellia sinensis , Folhas de Planta , Compostos Orgânicos Voláteis , Camellia sinensis/química , Comportamento do Consumidor , Cromatografia Gasosa-Espectrometria de Massas , Geografia , Odorantes/análise , Folhas de Planta/química , Chá/química , Compostos Orgânicos Voláteis/análise
7.
BMC Plant Biol ; 17(1): 155, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28923015

RESUMO

BACKGROUND: Pseudostellaria heterophylla (P. heterophylla), a herbaceous perennial, belongs to Caryophyllaceae family and is one of the Chinese herbal medicine with high pharmacodynamic value. It can be used to treat the spleen deficiency, anorexia, weakness after illness and spontaneous perspiration symptoms. Our previous study found that consecutive monoculture of Pseudostellaria heterophylla could lead to the deterioration of the rhizosphere microenvironment. The specialized forms of pathogenic fungus Fusarium oxysporum f.Sp. heterophylla (F. oxysporum) in rhizosphere soils of P. heterophylla plays an important role in the consecutive monoculture of P. heterophylla. RESULTS: In this study, F. oxysporum was used to infect the tissue culture plantlets of P. heterophylla to study the responding process at three different infection stages by using RNA-sequencing. We obtained 127,725 transcripts and 47,655 distinct unigenes by de novo assembly and obtained annotated information in details for 25,882 unigenes. The Kyoto Encyclopedia of Genes and Genomes pathway analysis and the real-time quantitative PCR results suggest that the calcium signal system and WRKY transcription factor in the plant-pathogen interaction pathway may play an important role in the response process, and all of the WRKY transcription factor genes were divided into three different types. Moreover, we also found that the stimulation of F. oxysporum may result in the accumulation of some phenolics in the plantlets and the programmed cell death of the plantlets. CONCLUSIONS: This study has partly revealed the possible molecular mechanism of the population explosion of F. oxysporum in rhizosphere soils and signal response process, which can be helpful in unraveling the role of F. oxysporum in consecutive monoculture problems of P. heterophylla.


Assuntos
Caryophyllaceae/genética , Caryophyllaceae/microbiologia , Fusarium/fisiologia , Doenças das Plantas/genética , Sinalização do Cálcio , Perfilação da Expressão Gênica , Genes de Plantas , Anotação de Sequência Molecular , Fenóis/metabolismo , Fenilpropionatos/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...