Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941286

RESUMO

After experiencing brain damage, stroke patients commonly suffer from motor and sensory impairments that impact their ability to perform volitional movements. Visuo-proprioceptive integration is a critical component of voluntary movement, allowing for accurate movements and a sense of ownership over one's body. While recent studies have increased our understanding of the balance between visual compensation and proprioceptive deficits in stroke patients, quantitative methods for studying multisensory integration are still lacking. This study aimed to evaluate the feasibility of adapting a 3D visuo-proprioceptive disparity (VPD) task into a 2D setting using an upper-limb robotic platform for moderate to severe chronic stroke patients. To assess the implementation of the 2D task, a cohort of unimpaired healthy participants performed the VPD task in both a 3D and 2D environment. We used a computational Bayesian model to predict errors in visuo-proprioceptive integration and compared the model's predictions to real behavioral data. Our findings indicated that the behavioral trends observed in the 2D and 3D tasks were similar, and the model accurately predicted behavior. We then evaluated the feasibility of our task to assess post-stroke deficits in a patient with severe motor and sensory deficits. Ultimately, this work may help to improve our understanding of the significance of visuo-proprioceptive integration and aid in the development of better rehabilitation therapies for improving sensorimotor outcomes in stroke patients.


Assuntos
Procedimentos Cirúrgicos Robóticos , Acidente Vascular Cerebral , Humanos , Teorema de Bayes , Estudos de Viabilidade , Extremidade Superior , Propriocepção
2.
Nat Med ; 29(3): 689-699, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807682

RESUMO

Cerebral strokes can disrupt descending commands from motor cortical areas to the spinal cord, which can result in permanent motor deficits of the arm and hand. However, below the lesion, the spinal circuits that control movement remain intact and could be targeted by neurotechnologies to restore movement. Here we report results from two participants in a first-in-human study using electrical stimulation of cervical spinal circuits to facilitate arm and hand motor control in chronic post-stroke hemiparesis ( NCT04512690 ). Participants were implanted for 29 d with two linear leads in the dorsolateral epidural space targeting spinal roots C3 to T1 to increase excitation of arm and hand motoneurons. We found that continuous stimulation through selected contacts improved strength (for example, grip force +40% SCS01; +108% SCS02), kinematics (for example, +30% to +40% speed) and functional movements, thereby enabling participants to perform movements that they could not perform without spinal cord stimulation. Both participants retained some of these improvements even without stimulation and no serious adverse events were reported. While we cannot conclusively evaluate safety and efficacy from two participants, our data provide promising, albeit preliminary, evidence that spinal cord stimulation could be an assistive as well as a restorative approach for upper-limb recovery after stroke.


Assuntos
Medula Cervical , Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Acidente Vascular Cerebral , Humanos , Paresia/etiologia , Paresia/terapia , Medula Espinal , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Extremidade Superior , Feminino , Adulto , Pessoa de Meia-Idade
3.
Neurorehabil Neural Repair ; 36(7): 426-436, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35616437

RESUMO

BACKGROUND: Repetitive task practice reduces mean upper extremity motor impairment in populations of patients with chronic stroke, but individual response is highly variable. A method to predict meaningful reduction in impairment in response to training based on biomarkers and other data collected prior to an intervention is needed to establish realistic rehabilitation goals and to effectively allocate resources. OBJECTIVES: To identify prognostic factors and better understand the biological substrate for reductions in arm impairment in response to repetitive task practice among patients with chronic (≥6 months) post-stroke hemiparesis. METHODS: The intervention is a form of repetitive task practice using a combination of robot-assisted therapy and functional arm use in real-world tasks. Baseline measures include the Fugl-Meyer Assessment, Wolf Motor Function Test, Action Research Arm Test, Stroke Impact Scale, questionnaires on pain and expectancy, MRI, transcranial magnetic stimulation, kinematics, accelerometry, and genomic testing. RESULTS: Mean increase in FM-UE was 4.6 ± 1.0 SE, median 2.5. Approximately one-third of participants had a clinically meaningful response to the intervention, defined as an increase in FM ≥ 5. The selected logistic regression model had a receiver operating curve with AUC = .988 (Std Error = .011, 95% Wald confidence limits: .967-1) showed little evidence of overfitting. Six variables that predicted response represented impairment, functional, and genomic measures. CONCLUSION: A simple weighted sum of 6 baseline factors can accurately predict clinically meaningful impairment reduction after outpatient intensive practice intervention in chronic stroke. Reduction of impairment may be a critical first step to functional improvement. Further validation and generalization of this model will increase its utility in clinical decision-making.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Paresia , Recuperação de Função Fisiológica , Reabilitação do Acidente Vascular Cerebral/métodos , Estimulação Magnética Transcraniana/métodos , Extremidade Superior
4.
Artigo em Inglês | MEDLINE | ID: mdl-32292910

RESUMO

OBJECTIVE: To demonstrate the feasibility of algorithmic prediction using a model of baseline arm movement, genetic factors, demographic characteristics, and multimodal assessment of the structure and function of motor pathways. To identify prognostic factors and the biological substrate for reductions in arm impairment in response to repetitive task practice. DESIGN: This prospective single-group interventional study seeks to predict response to a repetitive task practice program using an intent-to-treat paradigm. Response is measured as a change of ≥5 points on the Upper Extremity Fugl-Meyer from baseline to final evaluation (at the end of training). SETTING: General community. PARTICIPANTS: Anticipated enrollment of community-dwelling adults with chronic stroke (N = 96; onset≥6mo) and moderate to severe residual hemiparesis of the upper limb as defined by a score of 10-45 points on the Upper Extremity Fugl-Meyer. INTERVENTION: The intervention is a form of repetitive task practice using a combination of robot-assisted therapy coupled with functional arm use in real-world tasks administered over 12 weeks. MAIN OUTCOME MEASURES: Upper Extremity Fugl-Meyer Assessment (primary outcome), Wolf Motor Function Test, Action Research Arm Test, Stroke Impact Scale, questionnaires on pain and expectancy, magnetic resonance imaging, transcranial magnetic stimulation, arm kinematics, accelerometry, and a saliva sample for genetic testing. RESULTS: Methods for this trial are outlined, and an illustration of interindividual variability is provided by example of 2 participants who present similarly at baseline but achieve markedly different outcomes. CONCLUSION: This article presents the design, methodology, and rationale of an ongoing study to develop a predictive model of response to a standardized therapy for stroke survivors with chronic hemiparesis. Applying concepts from precision medicine to neurorehabilitation is practicable and needed to establish realistic rehabilitation goals and to effectively allocate resources.

5.
Artigo em Inglês | MEDLINE | ID: mdl-22254998

RESUMO

This study describes the design and feasibility testing of a hand rehabilitation system that provides haptic assistance for hand opening in moderate to severe hemiplegia while subjects attempt to perform bilateral hand movements. A cable-actuated exoskeleton robot assists the subjects in performing impaired finger movements but is controlled by movement of the unimpaired hand. In an attempt to combine the neurophysiological stimuli of bilateral movement and action observation during training, visual feedback of the impaired hand is replaced by feedback of the unimpaired hand, either by using a sagittaly oriented mirror or a virtual reality setup with a pair of virtual hands presented on a flat screen controlled with movement of the unimpaired hand, providing a visual image of their paretic hand moving normally. Joint angles for both hands are measured using data gloves. The system is programmed to maintain a symmetrical relationship between the two hands as they respond to commands to open and close simultaneously. Three persons with moderate to severe hemiplegia secondary to stroke trained with the system for eight, 30 to 60 minute sessions without adverse events. Each demonstrated positive motor adaptations to training. The system was well tolerated by persons with moderate to severe upper extremity hemiplegia. Further testing of its effects on motor ability with a broader range of clinical presentations is indicated.


Assuntos
Retroalimentação , Hemiplegia/fisiopatologia , Visão Ocular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...