Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 24(7): 072201, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22223630

RESUMO

Direct growth of graphene on Co(3)O(4)(111) at 1000 K was achieved by molecular beam epitaxy from a graphite source. Auger spectroscopy shows a characteristic sp(2) carbon lineshape, at average carbon coverages from 0.4 to 3 ML. Low energy electron diffraction (LEED) indicates (111) ordering of the sp(2) carbon film with a lattice constant of 2.5(±0.1) Å characteristic of graphene. Sixfold symmetry of the graphene diffraction spots is observed at 0.4, 1 and 3 ML. The LEED data also indicate an average domain size of ~1800 Å, and show an incommensurate interface with the Co(3)O(4)(111) substrate, where the latter exhibits a lattice constant of 2.8(±0.1) Å. Core level photoemission shows a characteristically asymmetric C(1s) feature, with the expected π to π* satellite feature, but with a binding energy for the 3 ML film of 284.9(±0.1) eV, indicative of substantial graphene-to-oxide charge transfer. Spectroscopic ellipsometry data demonstrate broad similarity with graphene samples physically transferred to SiO(2) or grown on SiC substrates, but with the π to π* absorption blue-shifted, consistent with charge transfer to the substrate. The ability to grow graphene directly on magnetically and electrically polarizable substrates opens new opportunities for industrial scale development of charge- and spin-based devices.


Assuntos
Cobalto/química , Grafite/química , Óxidos/química , Análise Espectral , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...