Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Plant Sci ; 28(5): 544-551, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36858842

RESUMO

Future crops need to be sustainable in the face of climate change. Modern barley varieties have been bred for high productivity and quality; however, they have suffered considerable genetic erosion, losing crucial genetic diversity. This renders modern cultivars vulnerable to climate change and stressful environments. We highlight the potential to tailor crops to a specific environment by utilising diversity inherent in an adapted landrace population. Tapping into natural biodiversity, while incorporating information about local environmental and climatic conditions, allows targeting of key traits and genotypes, enabling crop production in marginal soils. We outline future directions for the utilisation of genetic resources maintained in landrace collections to support sustainable agriculture through germplasm development via the use of genomics technologies and big data.


Assuntos
Hordeum , Solo , Hordeum/genética , Melhoramento Vegetal , Agricultura , Adaptação Fisiológica/genética , Produtos Agrícolas/genética
2.
Theor Appl Genet ; 133(9): 2567-2582, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32506274

RESUMO

KEY MESSAGE: Historical malting quality data was collated from UK national and recommended list trial data and used in a GWAS. 25 QTL were identified, with the majority from spring barley cultivar sets. In Europe, the most economically significant use of barley is the production of malt for use in the brewing and distilling industries. As such, selection for traits related to malting quality is of great commercial interest. In order to study the genetic basis of variation for malting quality traits in UK cultivars, a historical set of trial data was collated from national and recommended list trials from the period 1988 to 2016. This data was used to estimate variety means for 20 quality related traits in 451 spring barley cultivars, and 407 winter cultivars. Genotypes for these cultivars were generated using iSelect 9k and 50k genotyping platforms, and a genome wide association scan performed to identify malting quality quantitative trait loci (QTL). 24 QTL were identified in spring barley cultivars, and 2 from the winter set. A number of these correspond to known malting quality related genes but the remainder represents novel genetic variation that is accessible to breeders for the genetic improvement of new cultivars.


Assuntos
Mapeamento Cromossômico , Hordeum/genética , Locos de Características Quantitativas , Estudos de Associação Genética , Genótipo , Fenótipo , Melhoramento Vegetal , Reino Unido
3.
Plant J ; 99(6): 1172-1191, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31108005

RESUMO

Broadening the genetic base of crops is crucial for developing varieties to respond to global agricultural challenges such as climate change. Here, we analysed a diverse panel of 371 domesticated lines of the model crop barley to explore the genetics of crop adaptation. We first collected exome sequence data and phenotypes of key life history traits from contrasting multi-environment common garden trials. Then we applied refined statistical methods, including some based on exomic haplotype states, for genotype-by-environment (G×E) modelling. Sub-populations defined from exomic profiles were coincident with barley's biology, geography and history, and explained a high proportion of trial phenotypic variance. Clear G×E interactions indicated adaptation profiles that varied for landraces and cultivars. Exploration of circadian clock-related genes, associated with the environmentally adaptive days to heading trait (crucial for the crop's spread from the Fertile Crescent), illustrated complexities in G×E effect directions, and the importance of latitudinally based genic context in the expression of large-effect alleles. Our analysis supports a gene-level scientific understanding of crop adaption and leads to practical opportunities for crop improvement, allowing the prioritisation of genomic regions and particular sets of lines for breeding efforts seeking to cope with climate change and other stresses.


Assuntos
Aclimatação/genética , Produtos Agrícolas/genética , Exoma , Hordeum/genética , Relógios Circadianos/genética , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Geografia , Haplótipos , Desequilíbrio de Ligação , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sequenciamento do Exoma
4.
Methods Mol Biol ; 1900: 21-36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30460557

RESUMO

Barley is naturally an inbreeding hermaphrodite plant so that each generation resembles its parental generation. New variation can be introduced by crossing parents that complement each other for desirable or target characteristics but requires human intervention to ensure that all the resulting seeds are hybrids of the two parents. That means that plants selected to be female parents have to be emasculated and are then fertilized with pollen from plants selected to be male parents. Here we describe how to emasculate and pollinate barley plants with a method that can be used either in the glasshouse or in the field.


Assuntos
Cruzamentos Genéticos , Hordeum/genética , Flores/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Polinização , Sementes/crescimento & desenvolvimento
5.
Methods Mol Biol ; 1900: 283-310, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30460572

RESUMO

Exome capture is a reduced representation approach that selectively captures sequence from only the gene-bearing regions of a genome. It is based on probes targeted at these regions and, compared with whole genome shotgun sequencing, leads to a significant reduction in cost and data processing effort while still providing insights into the most relevant part of a genome. An exome capture array for barley was released in 2013 and this has opened the door to numerous studies that have put this technology to good use. In this chapter we detail the laboratory protocols required for enrichment and sequencing, and provide detailed step-by-step instructions for the bioinformatics analysis of the resulting data.


Assuntos
Exoma/genética , Variação Genética , Hordeum/genética , Análise de Sequência de DNA/métodos , DNA de Plantas/genética , Análise de Dados , Biblioteca Gênica , Genoma de Planta
6.
Ann Bot ; 123(5): 831-843, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30561497

RESUMO

BACKGROUND AND AIMS: Micronutrient deficiency in cereals is a problem of global significance, severely reducing grain yield and quality in marginal soils. Ancient landraces represent, through hundreds of years of local adaptation to adverse soil conditions, a unique reservoir of genes and unexplored traits for enhancing yield and abiotic stress tolerance. Here we explored and compared the genetic variation in a population of Northern European barley landraces and modern elite varieties, and their tolerance to manganese (Mn) limitation. METHODS: A total of 135 barley accessions were genotyped and the genetic diversity was explored using Neighbor-Joining clustering. Based on this analysis, a sub-population of genetically diverse landraces and modern elite control lines were evaluated phenotypically for their ability to cope with Mn-deficient conditions, across three different environments increasing in complexity from hydroponics through pot experiments to regional field trials. KEY RESULTS: Genetically a group of Scottish barley landraces (Bere barley) were found to cluster according to their island of origin, and accessions adapted to distinct biogeographical zones with reduced soil fertility had particularly larger Mn, but also zinc (Zn) and copper (Cu) concentrations in the shoot. Strikingly, when grown in an alkaline sandy soil in the field, the locally adapted landraces demonstrated an exceptional ability to acquire and translocate Mn to developing leaves, maintain photosynthesis and generate robust grain yields, whereas modern elite varieties totally failed to complete their life cycle. CONCLUSIONS: Our results highlight the importance of gene pools of local adaptation and the value of ancient landrace material to identify and characterize genes that control nutrient use efficiency traits in adverse environments to raise future crop production and improve agricultural sustainability in marginal soils. We propose and discuss a model summarizing the physiological mechanisms involved in the complex trait of tolerance to Mn limitation.


Assuntos
Hordeum , Solo , Grão Comestível , Genótipo , Manganês
7.
BMC Plant Biol ; 18(1): 340, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30526499

RESUMO

BACKGROUND: Exploring the natural occurring genetic variation of the wild barley genepool has become a major target of barley crop breeding programmes aiming to increase crop productivity and sustainability in global climate change scenarios. However this diversity remains unexploited and effective approaches are required to investigate the benefits that unadapted genomes could bring to crop improved resilience. In the present study, a set of Recombinant Chromosome Substitution Lines (RCSLs) derived from an elite barley cultivar 'Harrington' as the recurrent parent, and a wild barley accession from the Fertile Crescent 'Caesarea 26-24', as the donor parent (Matus et al. Genome 46:1010-23, 2003) have been utilised in field and controlled conditions to examine the contribution of wild barley genome as a source of novel allelic variation for the cultivated barley genepool. METHODS: Twenty-eight RCSLs which were selected to represent the entire genome of the wild barley accession, were genotyped using the 9 K iSelect SNP markers (Comadran et al. Nat Genet 44:1388-92, 2012) and phenotyped for a range of morphological, developmental and agronomic traits in 2 years using a rain-out shelter with four replicates and three water treatments. Data were analysed for marker traits associations using a mixed model approach. RESULTS: We identified lines that differ significantly from the elite parent for both qualitative and quantitative traits across growing seasons and water regimes. The detailed genotypic characterisation of the lines for over 1800 polymorphic SNP markers and the design of a mixed model analysis identified chromosomal regions associated with yield related traits where the wild barley allele had a positive response increasing grain weight and size. In addition, variation for qualitative characters, such as the presence of cuticle waxes on the developing spikes, was associated with the wild barley introgressions. Despite the coarse location of the QTLs, interesting candidate genes for the major marker-trait associations were identified using the recently released barley genome assembly. CONCLUSION: This study has highlighted the role of exotic germplasm to contribute novel allelic variation by using an optimised experimental approach focused on an exotic genetic library. The results obtained constitute a step forward to the development of more tolerant and resilient varieties.


Assuntos
Cromossomos de Plantas/genética , Hordeum/genética , Locos de Características Quantitativas/genética , Linhagem Celular , Mapeamento Cromossômico , Estudos de Associação Genética , Genoma de Planta/genética , Melhoramento Vegetal/métodos , Característica Quantitativa Herdável , Recombinação Genética/genética
8.
Theor Appl Genet ; 131(12): 2513-2528, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30151748

RESUMO

KEY MESSAGE: Association analyses of resistance to Rhynchosporium commune in a collection of European spring barley germplasm detected 17 significant resistance quantitative trait loci. The most significant association was confirmed as Rrs1. Rhynchosporium commune is a fungal pathogen of barley which causes a highly destructive and economically important disease known as rhynchosporium. Genome-wide association mapping was used to investigate the genetic control of host resistance to R. commune in a collection of predominantly European spring barley accessions. Multi-year disease nursery field trials revealed 8 significant resistance quantitative trait loci (QTL), whilst a separate association mapping analysis using historical data from UK national and recommended list trials identified 9 significant associations. The most significant association identified in both current and historical data sources, collocated with the known position of the major resistance gene Rrs1. Seedling assays with R. commune single-spore isolates expressing the corresponding avirulence protein NIP1 confirmed that this locus is Rrs1. These results highlight the significant and continuing contribution of Rrs1 to host resistance in current elite spring barley germplasm. Varietal height was shown to be negatively correlated with disease severity, and a resistance QTL was identified that co-localised with the semi-dwarfing gene sdw1, previously shown to contribute to disease escape. The remaining QTL represent novel resistances that are present within European spring barley accessions. Associated markers to Rrs1 and other resistance loci, identified in this study, represent a set of tools that can be exploited by breeders for the sustainable deployment of varietal resistance in new cultivars.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Hordeum/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Hordeum/microbiologia , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
9.
Front Plant Sci ; 8: 1566, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955358

RESUMO

Diastatic Power (DP) is an important quality trait for malt used in adjunct brewing and distilling. Substantial genetic variation for DP exists within UK elite barley cultivars, but breeding progress has been slow due to the limited demand, compared to the overall barley market, and difficulties in assessing DP. Estimates of DP (taken from recommended and national list trials between 1994 and 2012) from a collection of UK elite winter and spring varieties were used to identify contrasting sets of high and low DP varieties. DNA samples were pooled within sets and exome capture sequencing performed. Allele frequency estimates of Single Nucleotide Polymorphisms (SNPs) identified from the sequencing were used to identify genomic locations associated with differences in DP. Individual genotypes were generated from a set of custom KASP assays, both within sets and in a wider germplasm collection, to validate allele frequency estimates and marker associations with DP. QTL identified regions previously linked to variation in DP as well as novel associations. QTL colocalised with a number of genes annotated as having a diastase related function. Results indicate that winter barley is more genetically diverse for genes influencing DP. The marker assays produced by this work represent a resource that is available for immediate use by barley breeders in the production of new high DP varieties.

10.
BMC Genomics ; 15: 907, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25326272

RESUMO

BACKGROUND: (1,3;1,4)-ß-Glucan is an important component of the cell walls of barley grain as it affects processability during the production of alcoholic beverages and has significant human health benefits when consumed above recommended threshold levels. This leads to diametrically opposed quality requirements for different applications as low levels of (1,3;1,4)-ß-glucan are required for brewing and distilling and high levels for positive impacts on human health. RESULTS: We quantified grain (1,3;1,4)-ß-glucan content in a collection of 399 2-row Spring-type, and 204 2-row Winter-type elite barley cultivars originating mainly from north western Europe. We combined these data with genotypic information derived using a 9 K Illumina iSelect SNP platform and subsequently carried out a Genome Wide Association Scan (GWAS). Statistical analysis accounting for residual genetic structure within the germplasm collection allowed us to identify significant associations between molecular markers and the phenotypic data. By anchoring the regions that contain these associations to the barley genome assembly we catalogued genes underlying the associations. Based on gene annotations and transcript abundance data we identified candidate genes. CONCLUSIONS: We show that a region of the genome on chromosome 2 containing a cluster of CELLULOSE SYNTHASE-LIKE (Csl) genes, including CslF3, CslF4, CslF8, CslF10, CslF12 and CslH, as well as a region on chromosome 1H containing CslF9, are associated with the phenotype in this germplasm. We also observed that several regions identified by GWAS contain glycoside hydrolases that are possibly involved in (1,3;1,4)-ß-glucan breakdown, together with other genes that might participate in (1,3;1,4)-ß-glucan synthesis, re-modelling or regulation. This analysis provides new opportunities for understanding the genes related to the regulation of (1,3;1,4)-ß-glucan content in cereal grains.


Assuntos
Genômica , Hordeum/genética , Hordeum/metabolismo , Estações do Ano , beta-Glucanas/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Glucosiltransferases/genética , Glicosídeo Hidrolases/genética , Hordeum/enzimologia , Hordeum/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética
11.
PLoS One ; 9(7): e102502, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25025376

RESUMO

The development of genetic tools for non-model organisms has been hampered by cost, but advances in next-generation sequencing (NGS) have created new opportunities. In ecological research, this raises the prospect for developing molecular markers to simultaneously study important genetic processes such as gene flow in multiple non-model plant species within complex natural and anthropogenic landscapes. Here, we report the use of bar-coded multiplexed paired-end Illumina NGS for the de novo development of expressed sequence tag-derived simple sequence repeat (EST-SSR) markers at low cost for a range of 24 tree species. Each chosen tree species is important in complex tropical agroforestry systems where little is currently known about many genetic processes. An average of more than 5,000 EST-SSRs was identified for each of the 24 sequenced species, whereas prior to analysis 20 of the species had fewer than 100 nucleotide sequence citations. To make results available to potential users in a suitable format, we have developed an open-access, interactive online database, tropiTree (http://bioinf.hutton.ac.uk/tropiTree), which has a range of visualisation and search facilities, and which is a model for the efficient presentation and application of NGS data.


Assuntos
Genes de Plantas , Árvores/genética , Sequência de Bases , Produtos Agrícolas/genética , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Análise de Sequência de DNA
12.
PLoS One ; 9(2): e86021, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24505252

RESUMO

Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum) in geographic and environmental space in the context of current, past and potential future climates is important for conservation and for breeding the domesticated crop (Hordeum vulgare ssp. vulgare). Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24 nSSR) and chloroplast-derived (5 cpSSR) markers in 256 widely-sampled geo-referenced accessions. Results were compared with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM) and mid-term future (anthropogenic scenario A2, the 2080s) climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors could play an important role in tailoring conservation and crop improvement strategies to support future human food security.


Assuntos
Mudança Climática , DNA de Cloroplastos/genética , Ecossistema , Abastecimento de Alimentos , Hordeum/genética , Polimorfismo de Nucleotídeo Único , Marcadores Genéticos , Humanos
13.
J Exp Bot ; 65(4): 1025-37, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24399175

RESUMO

Ramularia leaf spot (RLS), caused by the fungus Ramularia collo-cygni, is a serious, recently emerged disease of barley in Europe and other temperate regions. This study investigated the trade off between strong resistance to powdery mildew conferred by mlo mutant alleles and increased susceptibility to RLS. In field trials and seedling tests, the presence of mlo alleles increased severity of RLS. Genetic analysis of a doubled-haploid population identified one quantitative trait locus for susceptibility to RLS, colocalizing with the mlo-11 allele for mildew resistance. The effect of mlo-11 on RLS severity was environmentally sensitive. Analysis of near-isogenic lines of different mlo mutations in various genetic backgrounds confirmed that mlo alleles increased RLS severity in seedlings and adult plants. For mlo resistance to mildew to be fully effective, the genes ROR1 and ROR2 are required. RLS symptoms were significantly reduced on mlo-5 ror double mutants but fungal DNA levels remained as high as in mlo-5 single mutants, implying that ror alleles modify the transition of the fungus from endophytism to necrotrophy. These results indicate that the widespread use of mlo resistance to control mildew may have inadvertently stimulated the emergence of RLS as a major disease of barley.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença/genética , Hordeum/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Europa (Continente) , Hordeum/imunologia , Hordeum/microbiologia , Hordeum/fisiologia , Mutação , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Plântula/genética , Plântula/imunologia , Plântula/microbiologia , Plântula/fisiologia
14.
New Phytol ; 191(2): 564-578, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21443695

RESUMO

Barley is a model species for the investigation of the evolution, adaptation and spread of the world's important crops. In this article, we describe the first application of an oligonucleotide pool assay single nucleotide polymorphism (SNP) platform to assess the evolution of barley in a portion of the Fertile Crescent, a key region in the development of farming. A large collection of >1000 genetically mapped, genome-wide SNPs was assayed in geographically matched landrace and wild barley accessions (N=448) from Jordan and Syria. Landrace and wild barley categories were clearly genetically differentiated, but a limited degree of secondary contact was evident. Significant chromosome-level differences in diversity between barley types were observed around genes known to be involved in the evolution of cultivars. The region of Jordan and southern Syria, compared with the north of Syria, was supported by SNP data as a more likely domestication origin. Our data provide evidence for hybridization as a possible mechanism for the continued adaptation of landrace barley under cultivation, indicate regions of the genome that may be subject to selection processes and suggest limited origins for the development of the cultivated crop.


Assuntos
Produtos Agrícolas/genética , Genoma de Planta/genética , Hordeum/genética , Polimorfismo de Nucleotídeo Único/genética , Adaptação Fisiológica , Cromossomos de Plantas/genética , DNA de Plantas/genética , Evolução Molecular , Genes de Plantas/genética , Geografia , Hibridização Genética , Jordânia , Análise de Sequência de DNA , Síria
15.
Mol Genet Genomics ; 274(5): 515-27, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16244872

RESUMO

More than 2,000 genome-wide barley single nucleotide polymorphisms (SNPs) were developed by resequencing unigene fragments from eight diverse accessions. The average genome-wide SNP frequency observed in 877 unigenes was 1 SNP per 200 bp. However, SNP frequency was highly variable with the least number of SNP and SNP haplotypes observed within European cultivated germplasm reflecting effects of breeding history on genetic diversity. More than 300 SNP loci were mapped genetically in three experimental mapping populations which allowed the construction of an integrated SNP map incorporating a large number of RFLP, AFLP and SSR markers (1,237 loci in total). The genes used for SNP discovery were selected based on their transcriptional response to a variety of abiotic stresses. A set of known barley abiotic stress QTL was positioned on the linkage map, while the available sequence and gene expression information facilitated the identification of genes potentially associated with these traits. Comparison of the sequenced SNP loci to the rice genome sequence identified several regions of highly conserved gene order providing a framework for marker saturation in barley genomic regions of interest. The integration of genome-wide SNP and expression data with available genetic and phenotypic information will facilitate the identification of gene function in barley and other non-model organisms.


Assuntos
Genes de Plantas , Ligação Genética , Hordeum/genética , Polimorfismo de Nucleotídeo Único , Etiquetas de Sequências Expressas
16.
Genome ; 47(2): 389-98, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15060592

RESUMO

Direct estimates of sequence diversity provides an abundant source of DNA polymorphisms based on single nucleotide polymorphisms (SNPs). The frequency and distribution of nucleotide diversity within 23 genes associated with grain germination in barley were determined in a sample of accessions representing European cultivars, landraces, and wild barley accessions from throughout the fertile crescent. The overall nucleotide diversity ranged from 0.0021 to 0.0189 with a single nucleotide change being detected every 78 bp and insertion-deletion events being observed every 680 bp. Within the cultivated (H. vulgare) genepool, a small number of haplotypes were detected, the total number of haplotypes observed in H. spontaneum was almost double that detected in H. vulgare (46 and 26, respectively). Distinct haplotypes were observed in the H. spontaneum and landrace genepools, which are highly divergent from H. vulgare. A comparison of SNP-based haplotype data with EST-derived SSRs and genomic SSRs revealed a similar trend of decreasing variability in the cultivated genepool. However, the number of unique alleles identified in the cultivated sample was much greater with genomic SSRs (18%) compared with only 2.1% for SNPs and 3.8% for EST-derived SSRs. The potential utility of SNPs and EST-derived SSRs for association mapping in barley is discussed.


Assuntos
Genoma de Planta , Hordeum/genética , Polimorfismo de Nucleotídeo Único , Sequência de Bases , Etiquetas de Sequências Expressas , Biblioteca Gênica , Genes de Plantas , Marcadores Genéticos , Germinação/genética , Haplótipos/genética , Repetições de Microssatélites , Dados de Sequência Molecular , Alinhamento de Sequência , Transcrição Gênica
17.
Nucleic Acids Res ; 31(19): e115, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-14500843

RESUMO

A microarray-based method has been developed for scoring thousands of DNAs for a co-dominant molecular marker on a glass slide. The approach was developed to detect insertional polymorphism of transposons and works well with single nucleotide polymorphism (SNP) markers. Biotin- terminated allele-specific PCR products are spotted unpurified onto streptavidin-coated glass slides and visualised by hybridisation of fluorescent detector oligonucleotides to tags attached to the allele- specific PCR primers. Two tagged primer oligonucleotides are used per locus and each tag is detected by hybridisation to a concatameric DNA probe labelled with multiple fluorochromes.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo Genético , Análise de Sequência de DNA/métodos , Biotinilação , Primers do DNA , Elementos de DNA Transponíveis , DNA de Plantas/análise , Corantes Fluorescentes , Marcadores Genéticos , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos/economia , Sondas de Oligonucleotídeos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...