Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(5): e2207337, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36281806

RESUMO

Control of adhesion is important in a host of applications including soft robotics, pick-and-place manufacturing, wearable devices, and transfer printing. While there are adhesive systems with discrete switchability between states of high and low adhesion, achieving continuously variable adhesion strength remains a challenge. In this work, a pressure-tunable adhesive (PTA) that is based on the self-assembly of stiff microscale asperities on an elastomeric substrate is presented. It is demonstrated that the adhesion strength of the PTA increases with the applied compressive preload due to the unique contact formation mechanism caused by the asperities. Additionally, a contact mechanics model is developed to explain the resulting trends. For a specific PTA design, the critical pull-off force can be increased from 0.4 to 30 mN by increasing the applied preload from 1 to 30 mN. Finally, the applicability of precision control of adhesion strength is demonstrated by utilizing the PTA for pick-and-place material handling. The approach in pressure-tunable adhesive design based on self-assembly of asperities presents a scalable and versatile approach that is applicable to a variety of material systems having different mechanical or surface properties.

2.
ACS Appl Mater Interfaces ; 13(16): 19422-19429, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33847491

RESUMO

Adhesives based on fibrillar surface microstructures have shown great potential for handling applications requiring strong, reversible, and switchable adhesion. Recently, the importance of the statistical distribution of adhesive strength of individual fibrils in controlling the overall performance was revealed. Strength variations physically correspond to different interfacial defect sizes, which, among other factors, are related to surface roughness. For analysis of the strength distribution, Weibull's statistical theory of fracture was introduced. In this study, the importance of the statistical properties in controlling the stability of attachment is explored. Considering the compliance of the loading system, we develop a stability criterion based on the Weibull statistical parameters. It is shown that when the distribution in fibril adhesive strength is narrow, the global strength is higher but unstable detachment is more likely. Experimental variation of the loading system compliance for a specimen of differing statistical properties shows a transition to unstable detachment at low system stiffness, in good agreement with the theoretical stability map. This map serves to inform the design of gripper compliance, when coupled with statistical analysis of strength on the target surface of interest. Such a treatment could prevent catastrophic failure by spontaneous detachment of an object from an adhesive gripper.

3.
J R Soc Interface ; 16(156): 20190239, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31362613

RESUMO

Dry adhesives using surface microstructures inspired by climbing animals have been recognized for their potentially novel capabilities, with relevance to a range of applications including pick-and-place handling. Past work has suggested that performance may be strongly dependent on variability in the critical defect size among fibrillar sub-contacts. However, it has not been directly verified that the resulting adhesive strength distribution is well described by the statistical theory of fracture used. Using in situ contact visualization, we characterize adhesive strength on a fibril-by-fibril basis for a synthetic fibrillar adhesive. Two distinct detachment mechanisms are observed. The fundamental, design-dependent mechanism involves defect propagation from within the contact. The secondary mechanism involves defect propagation from fabrication imperfections at the perimeter. The existence of two defect populations complicates characterization of the statistical properties. This is addressed by using the mean order ranking method to isolate the fundamental mechanism. The statistical properties obtained are subsequently used within a bimodal framework, allowing description of the secondary mechanism. Implications for performance are discussed, including the improvement of strength associated with elimination of fabrication imperfections. This statistical analysis of defect-dependent detachment represents a more complete approach to the characterization of fibrillar adhesives, offering new insight for design and fabrication.


Assuntos
Adesivos/química , Materiais Biomiméticos/química , Modelos Químicos , Animais , Lagartos
4.
ACS Appl Mater Interfaces ; 9(16): 14497-14505, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28398039

RESUMO

Geckos have developed foot pads that allow them to maintain their unique climbing ability despite vast differences of surfaces and environments, from dry desert to humid rainforest. Likewise, successful gecko-inspired mimics should exhibit adhesive and frictional performance across a similarly diverse range of climates. In this work, we focus on the effect of relative humidity (RH) on the "frictional-adhesion" behavior of gecko-inspired adhesive pads. A surface forces apparatus was used to quantitatively measure adhesion and friction forces of a microfibrillar cross-linked polydimethylsiloxane surface against a smooth hemispherical glass disk at varying relative humidity, from 0 to 100% (including fully submerged under water). Geometrically anisotropic tilted half-cylinder microfibers yield a "grip state" (high adhesion and friction forces after shearing along the tilt of the fibers, Fad+ and F∥+) and a "release state" (low adhesion and friction after shearing against the tilt of the fibers, Fad- and F∥-). By appropriate control of the loading path, this allows for transition between strong attachment and easy detachment. Changing the preload and shear direction gives rise to differences in the effective contact area at each fiber and the microscale and nanoscale structure of the contact while changing the relative humidity results in differences in the relative contributions of van der Waals and capillary forces. In combination, both effects lead to interesting trends in the adhesion and friction forces. At up to 75% RH, the grip state adhesion force remains constant and the ratio of grip to release adhesion force does not drop below 4.0. In addition, the friction forces F∥+ and F∥- and the release state adhesion force Fad- exhibit a maximum at intermediate relative humidity between 40% and 75%.

5.
Nanotechnology ; 27(32): 325503, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27363896

RESUMO

We report a method for quantifying scanning thermal microscopy (SThM) probe-sample thermal interactions in air using a novel temperature calibration device. This new device has been designed, fabricated and characterised using SThM to provide an accurate and spatially variable temperature distribution that can be used as a temperature reference due to its unique design. The device was characterised by means of a microfabricated SThM probe operating in passive mode. This data was interpreted using a heat transfer model, built to describe the thermal interactions during a SThM thermal scan. This permitted the thermal contact resistance between the SThM tip and the device to be determined as 8.33 × 10(5) K W(-1). It also permitted the probe-sample contact radius to be clarified as being the same size as the probe's tip radius of curvature. Finally, the data were used in the construction of a lumped-system steady state model for the SThM probe and its potential applications were addressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...