Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 161(3)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39007368

RESUMO

The Structure and TOpology Replica Molecular Mechanics (STORMM) code is a next-generation molecular simulation engine and associated libraries optimized for performance on fast, vectorized central processor units and graphics processing units (GPUs) with independent memory and tens of thousands of threads. STORMM is built to run thousands of independent molecular mechanical calculations on a single GPU with novel implementations that tune numerical precision, mathematical operations, and scarce on-chip memory resources to optimize throughput. The libraries are built around accessible classes with detailed documentation, supporting fine-grained parallelism and algorithm development as well as copying or swapping groups of systems on and off of the GPU. A primary intention of the STORMM libraries is to provide developers of atomic simulation methods with access to a high-performance molecular mechanics engine with extensive facilities to prototype and develop bespoke tools aimed toward drug discovery applications. In its present state, STORMM delivers molecular dynamics simulations of small molecules and small proteins in implicit solvent with tens to hundreds of times the throughput of conventional codes. The engineering paradigm transforms two of the most memory bandwidth-intensive aspects of condensed-phase dynamics, particle-mesh mapping, and valence interactions, into compute-bound problems for several times the scalability of existing programs. Numerical methods for compressing and streamlining the information present in stored coordinates and lookup tables are also presented, delivering improved accuracy over methods implemented in other molecular dynamics engines. The open-source code is released under the MIT license.

2.
J Chem Theory Comput ; 20(1): 239-252, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38147689

RESUMO

Software to more rapidly and accurately predict protein-ligand binding affinities is of high interest for early-stage drug discovery, and physics-based methods are among the most widely used technologies for this purpose. The accuracy of these methods depends critically on the accuracy of the potential functions that they use. Potential functions are typically trained against a combination of quantum chemical and experimental data. However, although binding affinities are among the most important quantities to predict, experimental binding affinities have not to date been integrated into the experimental data set used to train potential functions. In recent years, the use of host-guest complexes as simple and tractable models of binding thermodynamics has gained popularity due to their small size and simplicity, relative to protein-ligand systems. Host-guest complexes can also avoid ambiguities that arise in protein-ligand systems such as uncertain protonation states. Thus, experimental host-guest binding data are an appealing additional data type to integrate into the experimental data set used to optimize potential functions. Here, we report the extension of the Open Force Field Evaluator framework to enable the systematic calculation of host-guest binding free energies and their gradients with respect to force field parameters, coupled with the curation of 126 host-guest complexes with available experimental binding free energies. As an initial application of this novel infrastructure, we optimized generalized Born (GB) cavity radii for the OBC2 GB implicit solvent model against experimental data for 36 host-guest systems. This refitting led to a dramatic improvement in accuracy for both the training set and a separate test set with 90 additional host-guest systems. The optimized radii also showed encouraging transferability from host-guest systems to 59 protein-ligand systems. However, the new radii are significantly smaller than the baseline radii and lead to excessively favorable hydration free energies (HFEs). Thus, users of the OBC2 GB model currently may choose between GB cavity radii that yield more accurate binding affinities and GB cavity radii that yield more accurate HFEs. We suspect that achieving good accuracy on both will require more far-reaching adjustments to the GB model. We note that binding free-energy calculations using the OBC2 model in OpenMM gain about a 10× speedup relative to corresponding explicit solvent calculations, suggesting a future role for implicit solvent absolute binding free-energy (ABFE) calculations in virtual compound screening. This study proves the principle of using host-guest systems to train potential functions that are transferrable to protein-ligand systems and provides an infrastructure that enables a range of applications.


Assuntos
Proteínas , Software , Ligantes , Proteínas/química , Ligação Proteica , Solventes/química , Termodinâmica , Simulação de Dinâmica Molecular
3.
Digit Discov ; 2(4): 1178-1187, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38013814

RESUMO

The Lennard-Jones potential is the most widely-used function for the description of non-bonded interactions in transferable force fields for the condensed phase. This is not because it has an optimal functional form, but rather it is a legacy resulting from when computational expense was a major consideration and this potential was particularly convenient numerically. At present, it persists because the effort that would be required to re-write molecular modelling software and train new force fields has, until now, been prohibitive. Here, we present Smirnoff-plugins as a flexible framework to extend the Open Force Field software stack to allow custom force field functional forms. We deploy Smirnoff-plugins with the automated Open Force Field infrastructure to train a transferable, small molecule force field based on the recently-proposed double exponential functional form, on over 1000 experimental condensed phase properties. Extensive testing of the resulting force field shows improvements in transfer free energies, with acceptable conformational energetics, run times and convergence properties compared to state-of-the-art Lennard-Jones based force fields.

4.
J Chem Theory Comput ; 19(11): 3251-3275, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37167319

RESUMO

We introduce the Open Force Field (OpenFF) 2.0.0 small molecule force field for drug-like molecules, code-named Sage, which builds upon our previous iteration, Parsley. OpenFF force fields are based on direct chemical perception, which generalizes easily to highly diverse sets of chemistries based on substructure queries. Like the previous OpenFF iterations, the Sage generation of OpenFF force fields was validated in protein-ligand simulations to be compatible with AMBER biopolymer force fields. In this work, we detail the methodology used to develop this force field, as well as the innovations and improvements introduced since the release of Parsley 1.0.0. One particularly significant feature of Sage is a set of improved Lennard-Jones (LJ) parameters retrained against condensed phase mixture data, the first refit of LJ parameters in the OpenFF small molecule force field line. Sage also includes valence parameters refit to a larger database of quantum chemical calculations than previous versions, as well as improvements in how this fitting is performed. Force field benchmarks show improvements in general metrics of performance against quantum chemistry reference data such as root-mean-square deviations (RMSD) of optimized conformer geometries, torsion fingerprint deviations (TFD), and improved relative conformer energetics (ΔΔE). We present a variety of benchmarks for these metrics against our previous force fields as well as in some cases other small molecule force fields. Sage also demonstrates improved performance in estimating physical properties, including comparison against experimental data from various thermodynamic databases for small molecule properties such as ΔHmix, ρ(x), ΔGsolv, and ΔGtrans. Additionally, we benchmarked against protein-ligand binding free energies (ΔGbind), where Sage yields results statistically similar to previous force fields. All the data is made publicly available along with complete details on how to reproduce the training results at https://github.com/openforcefield/openff-sage.


Assuntos
Benchmarking , Proteínas , Ligantes , Proteínas/química , Termodinâmica , Entropia
5.
Artigo em Inglês | MEDLINE | ID: mdl-36337282

RESUMO

Molecular simulations such as molecular dynamics (MD) and Monte Carlo (MC) simulations are powerful tools allowing the prediction of experimental observables in the study of systems such as proteins, membranes, and polymeric materials. The quality of predictions based on molecular simulations depend on the validity of the underlying physical assumptions. physical_validation allows users of molecular simulation programs to perform simple yet powerful tests of physical validity on their systems and setups. It can also be used by molecular simulation package developers to run representative test systems during development, increasing code correctness. The theoretical foundation of the physical validation tests were established by Merz & Shirts (2018), in which the physical_validation package was first mentioned.

6.
J Chem Inf Model ; 62(22): 5622-5633, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36351167

RESUMO

The development of accurate transferable force fields is key to realizing the full potential of atomistic modeling in the study of biological processes such as protein-ligand binding for drug discovery. State-of-the-art transferable force fields, such as those produced by the Open Force Field Initiative, use modern software engineering and automation techniques to yield accuracy improvements. However, force field torsion parameters, which must account for many stereoelectronic and steric effects, are considered to be less transferable than other force field parameters and are therefore often targets for bespoke parametrization. Here, we present the Open Force Field QCSubmit and BespokeFit software packages that, when combined, facilitate the fitting of torsion parameters to quantum mechanical reference data at scale. We demonstrate the use of QCSubmit for simplifying the process of creating and archiving large numbers of quantum chemical calculations, by generating a dataset of 671 torsion scans for druglike fragments. We use BespokeFit to derive individual torsion parameters for each of these molecules, thereby reducing the root-mean-square error in the potential energy surface from 1.1 kcal/mol, using the original transferable force field, to 0.4 kcal/mol using the bespoke version. Furthermore, we employ the bespoke force fields to compute the relative binding free energies of a congeneric series of inhibitors of the TYK2 protein, and demonstrate further improvements in accuracy, compared to the base force field (MUE reduced from 0.560.390.77 to 0.420.280.59 kcal/mol and R2 correlation improved from 0.720.350.87 to 0.930.840.97).


Assuntos
Proteínas , Software , Ligantes , Proteínas/química , Entropia , Ligação Proteica
7.
J Chem Theory Comput ; 18(6): 3577-3592, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35533269

RESUMO

Developing a sufficiently accurate classical force field representation of molecules is key to realizing the full potential of molecular simulations as a route to gaining a fundamental insight into a broad spectrum of chemical and biological phenomena. This is only possible, however, if the many complex interactions between molecules of different species in the system are accurately captured by the model. Historically, the intermolecular van der Waals (vdW) interactions have primarily been trained against densities and enthalpies of vaporization of pure (single-component) systems, with occasional usage of hydration free energies. In this study, we demonstrate how including physical property data of binary mixtures can better inform these parameters, encoding more information about the underlying physics of the system in complex chemical mixtures. To demonstrate this, we retrain a select number of Lennard-Jones parameters describing the vdW interactions of the OpenFF 1.0.0 (Parsley) fixed charge force field against training sets composed of densities and enthalpies of mixing for binary liquid mixtures as well as densities and enthalpies of vaporization of pure liquid systems and assess the performance of each of these combinations. We show that retraining against the mixture data improves the force field's ability to reproduce mixture properties, including solvation free energies, correcting some systematic errors that exist when training vdW interactions against properties of pure systems only.


Assuntos
Termodinâmica
8.
J Chem Theory Comput ; 18(6): 3566-3576, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35507313

RESUMO

Developing accurate classical force field representations of molecules is key to realizing the full potential of molecular simulations, both as a powerful route to gaining fundamental insights into a broad spectrum of chemical and biological phenomena and for predicting physicochemical and mechanical properties of substances. The Open Force Field Consortium is an industry-funded open science effort to this end, developing open-source tools for rapidly generating new high-quality small-molecule force fields. An integral aspect of this is the parameterization and assessment of force fields against high-quality, condensed-phase physical property data, curated from open data sources such as the NIST ThermoML Archive, alongside quantum chemical data. The quantity of such experimental data in open data archives alone would require an onerous amount of human and computational resources to both curate and estimate manually, especially when estimations must be obtained for numerous sets of force field parameters. Here, we present an entirely automated, highly scalable framework for evaluating physical properties and their gradients in terms of force field parameters. It is written as a modular and extensible Python framework, which employs an intelligent multiscale estimation approach that allows for the automated estimation of properties from simulation and cached simulation data, and a pluggable API for estimation of new properties. In this study, we demonstrate the utility of the framework by benchmarking the OpenFF 1.0.0 small-molecule force field and GAFF 1.8 and GAFF 2.1 force fields against a test set of binary density and enthalpy of mixing measurements curated using the framework utilities. Further, we demonstrate the framework's utility as part of force field optimization by using it alongside ForceBalance, a framework for systematic force field optimization, to retrain a set of nonbonded van der Waals parameters against a training set of density and enthalpy of vaporization measurements.


Assuntos
Termodinâmica , Simulação por Computador , Humanos
9.
J Chem Inf Model ; 62(4): 874-889, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35129974

RESUMO

A high level of physical detail in a molecular model improves its ability to perform high accuracy simulations but can also significantly affect its complexity and computational cost. In some situations, it is worthwhile to add complexity to a model to capture properties of interest; in others, additional complexity is unnecessary and can make simulations computationally infeasible. In this work, we demonstrate the use of Bayesian inference for molecular model selection, using Monte Carlo sampling techniques accelerated with surrogate modeling to evaluate the Bayes factor evidence for different levels of complexity in the two-centered Lennard-Jones + quadrupole (2CLJQ) fluid model. Examining three nested levels of model complexity, we demonstrate that the use of variable quadrupole and bond length parameters in this model framework is justified only for some chemistries. Through this process, we also get detailed information about the distributions and correlation of parameter values, enabling improved parametrization and parameter analysis. We also show how the choice of parameter priors, which encode previous model knowledge, can have substantial effects on the selection of models, penalizing careless introduction of additional complexity. We detail the computational techniques used in this analysis, providing a roadmap for future applications of molecular model selection via Bayesian inference and surrogate modeling.


Assuntos
Teorema de Bayes , Simulação por Computador , Método de Monte Carlo
10.
J Chem Theory Comput ; 17(10): 6262-6280, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34551262

RESUMO

We present a methodology for defining and optimizing a general force field for classical molecular simulations, and we describe its use to derive the Open Force Field 1.0.0 small-molecule force field, codenamed Parsley. Rather than using traditional atom typing, our approach is built on the SMIRKS-native Open Force Field (SMIRNOFF) parameter assignment formalism, which handles increases in the diversity and specificity of the force field definition without needlessly increasing the complexity of the specification. Parameters are optimized with the ForceBalance tool, based on reference quantum chemical data that include torsion potential energy profiles, optimized gas-phase structures, and vibrational frequencies. These quantum reference data are computed and are maintained with QCArchive, an open-source and freely available distributed computing and database software ecosystem. In this initial application of the method, we present essentially a full optimization of all valence parameters and report tests of the resulting force field against compounds and data types outside the training set. These tests show improvements in optimized geometries and conformational energetics and demonstrate that Parsley's accuracy for liquid properties is similar to that of other general force fields, as is accuracy on binding free energies. We find that this initial Parsley force field affords accuracy similar to that of other general force fields when used to calculate relative binding free energies spanning 199 protein-ligand systems. Additionally, the resulting infrastructure allows us to rapidly optimize an entirely new force field with minimal human intervention.


Assuntos
Benchmarking , Petroselinum , Ecossistema , Humanos , Ligantes , Conformação Molecular
11.
J Chem Phys ; 151(18): 184113, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31731842

RESUMO

While the solubility of a substance is a fundamental property of widespread significance, its prediction from first principles (starting from only the knowledge of the molecular structure of the solute and solvent) remains a challenge. Recently, we proposed a robust and efficient method to predict the solubility from the density of states of a solute-solvent system using classical molecular simulation. The efficiency, and indeed the generality, of the method has now been enhanced by extending it to calculate solution chemical potentials (rather than probability distributions as done previously), from which solubility may be accessed. The method has been employed to predict the chemical potential of Form 1 of urea in both water and methanol for a range of concentrations at ambient conditions and for two charge models. The chemical potential calculations were validated by thermodynamic integration with the two sets of values being in excellent agreement. The solubility determined from the chemical potentials for urea in water ranged from 0.46 to 0.50 mol kg-1, while that for urea in methanol ranged from 0.62 to 0.85 mol kg-1, over the temperature range 298-328 K. In common with other recent studies of solubility prediction from molecular simulation, the predicted solubilities differ markedly from experimental values, reflecting limitations of current forcefields.

12.
Phys Chem Chem Phys ; 20(32): 20981-20987, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30070281

RESUMO

Solubility is a fundamental property of widespread significance. Despite its importance, its efficient and accurate prediction from first principles remains a major challenge. Here we propose a novel method to predict the solubility of molecules using a density of states (DOS) approach from classical molecular simulation. The method offers a potential route to solubility prediction for large (including drug-like) molecules over a range of temperatures and pressures, all from a modest number of simulations. The method was employed to predict the solubility of sodium chloride in water at ambient conditions, yielding a value of 3.77(5) mol kg-1. This is in close agreement with other approaches based on molecular simulation, the consensus literature value being 3.71(25) mol kg-1. The predicted solubility is about half of the experimental value, the disparity being attributed to the known limitation of the Joung-Cheatham force field model employed for NaCl. The proposed method also accurately predicted the NaCl model's solubility over the temperature range 298-373 K directly from the density of states data used to predict the ambient solubility.

13.
Nanoscale ; 7(28): 12104-8, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26123404

RESUMO

We show that graphene nano-sheets, when appropriately functionalised, can form self-assembling nanocontainers which may be opened or closed using a chemical trigger such as pH or polarity of solvent. Conceptual design rules are presented for different container structures, whose ability to form and encapsulate guest molecules is verified by molecular dynamics simulations. The structural simplicity of the graphene nanocontainers offers considerable scope for scaling the capacity, modulating the nature of the internal environment, and defining the trigger for encapsulation or release of the guest molecule(s). This design study will serve to provide additional impetus to developing synthetic approaches for selective functionalisation of graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...