Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; : e2451044, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014923

RESUMO

Human cytomegalovirus is a medically important pathogen. Previously, using murine CMV (MCMV), we provided evidence that both neutralizing and nonneutralizing antibodies can confer protection from viral infection in vivo. In this study, we report that serum derived from infected animals had a greater protective capacity in MCMV-infected RAG-/- mice than serum from animals immunized with purified virus. The protective activity of immune serum was strictly dependent on functional Fcγ receptors (FcγR). Deletion of individual FcγRs or combined deletion of FcγRI and FcγRIV had little impact on the protection afforded by serum. Adoptive transfer of CD115-positive cells from noninfected donors demonstrated that monocytes represent important cellular mediators of the protective activity provided by immune serum. Our studies suggest that Fc-FcγR interactions and monocytic cells are critical for antibody-mediated protection against MCMV infection in vivo. These findings may provide new avenues for the development of novel strategies for more effective CMV vaccines or antiviral immunotherapies.

2.
PLoS Pathog ; 13(8): e1006601, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28854233

RESUMO

Human cytomegalovirus (HCMV) is an important, ubiquitous pathogen that causes severe clinical disease in immunocompromised individuals, such as organ transplant recipients and infants infected in utero. Antiviral chemotherapy remains problematic due to toxicity of the available compounds and the emergence of viruses resistant to available antiviral therapies. Antiviral antibodies could represent a valuable alternative strategy to limit the clinical consequences of viral disease in patients. The envelope glycoprotein B (gB) of HCMV is a major antigen for the induction of virus neutralizing antibodies. However, the role of anti-gB antibodies in the course of the infection in-vivo remains unknown. We have used a murine CMV (MCMV) model to generate and study a number of anti-gB monoclonal antibodies (mAbs) with differing virus-neutralizing capacities. The mAbs were found to bind to similar antigenic structures on MCMV gB that are represented in HCMV gB. When mAbs were used in immunodeficient RAG-/- hosts to limit an ongoing infection we observed a reduction in viral load both with mAbs having potent neutralizing capacity in-vitro as well as mAbs classified as non-neutralizing. In a therapeutic setting, neutralizing mAbs showed a greater capacity to reduce the viral burden compared to non-neutralizing antibodies. Efficacy was correlated with sustained concentration of virus neutralizing mAbs in-vivo rather than their in-vitro neutralizing capacity. Combinations of neutralizing mAbs further augmented the antiviral effect and were found to be as potent in protection as polyvalent serum from immune animals. Prophylactic administration of mAbs before infection was also protective and both neutralizing and non-neutralizing mAbs were equally effective in preventing lethal infection of immunodeficient mice. In summary, our data argue that therapeutic application of potently neutralizing mAbs against gB represent a strategy to modify the outcome of CMV infection in immunodeficient hosts. When present before infection, both neutralizing and non-neutralizing anti-gB exhibited protective capacity.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra Citomegalovirus/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Monoclonais/imunologia , Citomegalovirus/imunologia , Infecções por Citomegalovirus/imunologia , Modelos Animais de Doenças , Camundongos , Reação em Cadeia da Polimerase em Tempo Real
3.
Antiviral Res ; 100(3): 640-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24149002

RESUMO

Currently available antiviral drugs frequently induce side-effects or selection of drug-resistant viruses. We describe a novel antiviral principle based on targeting the cellular enzyme dihydroorotate dehydrogenase (DHODH). In silico drug design and biochemical evaluation identified Compound 1 (Cmp1) as a selective inhibitor of human DHODH in vitro (IC50 1.5±0.2nM). Crystallization data specified the mode of drug-target interaction. Importantly, Cmp1 displayed a very potent antiviral activity that could be reversed by co-application of uridine or other pyrimidine precursors, underlining the postulated DHODH-directed mode of activity. Human and animal cytomegaloviruses as well as adenoviruses showed strong sensitivity towards Cmp1 in cell culture-based infection systems with IC50 values in the low micromolar to nanomolar range. Particularly, broad inhibitory activity was demonstrated for various types of laboratory and clinically relevant adenoviruses. For replication of human cytomegalovirus in primary fibroblasts, antiviral mode of activity was attributed to the early stage of gene expression. A mouse in vivo model proved reduced replication of murine cytomegalovirus in various organs upon Cmp1 treatment. These findings suggested Cmp1 as drug candidate and validated DHODH as a promising cellular target for antiviral therapy.


Assuntos
Antimetabólitos/farmacologia , Antivirais/farmacologia , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Pirimidinas/biossíntese , Adenovírus Humanos/efeitos dos fármacos , Animais , Antimetabólitos/síntese química , Antimetabólitos/química , Antivirais/síntese química , Antivirais/química , Células Cultivadas , Simulação por Computador , Citomegalovirus/efeitos dos fármacos , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/virologia , Ganciclovir/farmacologia , Herpesviridae/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Camundongos , Modelos Moleculares , Estrutura Molecular , Organismos Livres de Patógenos Específicos , Relação Estrutura-Atividade , Vaccinia virus/efeitos dos fármacos , Cultura de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...