Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 9(8)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443150

RESUMO

Aiming to improve the treatment outcomes of current daily tuberculosis (TB) chemotherapy over several months, we investigated whether nanoencapsulation of existing drugs would allow decreasing the treatment frequency to weekly, thereby ultimately improving patient compliance. Nanoencapsulation of three first-line anti-TB drugs was achieved by a unique, scalable spray-drying technology forming free-flowing powders in the nanometer range with encapsulation efficiencies of 82, 75, and 62% respectively for rifampicin, pyrazinamide, and isoniazid. In a pre-clinical study on TB infected mice, we demonstrate that the encapsulated drugs, administered once weekly for nine weeks, showed comparable efficacy to daily treatment with free drugs over the same experimental period. Both treatment approaches had equivalent outcomes for resolution of inflammation associated with the infection of lungs and spleens. These results demonstrate how scalable technology could be used to manufacture nanoencapsulated drugs. The formulations may be used to reduce the oral dose frequency from daily to once weekly in order to treat uncomplicated TB.

2.
Int J Pharm ; 424(1-2): 115-20, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22227605

RESUMO

The surface of nanoparticles is often functionalised with polymeric surfactants, in order to increase systemic circulation time. This has been investigated mainly for intravenously administered nanoparticles. This study aims to elucidate the effect of surface coating with various concentrations of polymeric surfactants (PEG and Pluronics F127) on the in vitro protein binding as well as the tissue biodistribution, post oral administration, of PLGA nanoparticles. The in vitro protein binding varied depending on the polymeric surfactant used. However, in vivo, 1% PEG and 1% Pluronics F127 coated particles presented similar biodistribution profiles in various tissues over seven days. Furthermore, the percentage of PEG and Pluronics coated particles detected in plasma was higher than that of uncoated PLGA particles, indicating that systemic circulation time can also be increased with oral formulations. The difference in the in vitro protein binding as a result of the different poloxamers used versus similar in vivo profiles of these particles indicates that in vitro observations for nanoparticles cannot represent or be correlated to the in vivo behaviour of the nanoparticles. Our results therefore suggest that more studies have to be conducted for oral formulations to give a better understanding of the kinetics of the particles.


Assuntos
Portadores de Fármacos/farmacocinética , Ácido Láctico/farmacocinética , Nanopartículas , Poloxâmero/farmacocinética , Polietilenoglicóis/farmacocinética , Ácido Poliglicólico/farmacocinética , Administração Oral , Animais , Proteínas Sanguíneas/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Feminino , Humanos , Ácido Láctico/química , Ácido Láctico/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Poloxâmero/química , Poloxâmero/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Ácido Poliglicólico/química , Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ligação Proteica , Distribuição Tecidual
3.
Nanomedicine ; 6(5): 662-71, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20230912

RESUMO

The remarkable physicochemical properties of particles in the nanometer range have been proven to address many challenges in the field of science. However, the possible toxic effects of these particles have raised some concerns. The aim of this article is to evaluate the effects of poly(lactide-co-glycolide) (PLGA) nanoparticles in vitro and in vivo compared to industrial nanoparticles of a similar size range such as zinc oxide, ferrous oxide, and fumed silica. An in vitro cytotoxicity study was conducted to assess the cell viability following exposure to PLGA nanoparticles. Viability was determined by means of a WST assay, wherein cell viability of greater than 75% was observed for both PLGA and amorphous fumed silica particles and ferrous oxide, but was significantly reduced for zinc oxide particles. In vivo toxicity assays were performed via histopathological evaluation, and no specific anatomical pathological changes or tissue damage was observed in the tissues of Balb/C mice. The extent of tissue distribution and retention following oral administration of PLGA particles was analyzed for 7 days. After 7 days, the particles remained detectable in the brain, heart, kidney, liver, lungs, and spleen. The results show that a mean percentage (40.04%) of the particles were localized in the liver, 25.97% in the kidney, and 12.86% in the brain. The lowest percentage was observed in the spleen. Thus, based on these assays, it can be concluded that the toxic effects observed with various industrial nanoparticles will not be observed with particles made of synthetic polymers such as PLGA when applied in the field of nanomedicine. Furthermore, the biodistribution of the particles warrants surface modification of the particles to avoid higher particle localization in the liver. FROM THE CLINICAL EDITOR: The aim of this study was to evaluate the effects of poly(lactide-co-glycolide) (PLGA) nanoparticles in vitro and in vivo compared to industrial nanoparticles including zinc oxide, ferrous oxide, and fumed silica. The authors concluded that the toxic effects observed with various industrial nanoparticles is unlikely to be observed with particles made of PLGA. The biodistribution of these particles warrants surface modification to avoid particle accumulation in the liver.


Assuntos
Sistemas de Liberação de Medicamentos/efeitos adversos , Ácido Láctico/efeitos adversos , Ácido Láctico/farmacocinética , Nanopartículas/efeitos adversos , Ácido Poliglicólico/efeitos adversos , Ácido Poliglicólico/farmacocinética , Animais , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Ácido Láctico/química , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Nanopartículas/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...