Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 15: 63, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24589256

RESUMO

BACKGROUND: Whole-genome sequencing represents a powerful experimental tool for pathogen research. We present methods for the analysis of small eukaryotic genomes, including a streamlined system (called Platypus) for finding single nucleotide and copy number variants as well as recombination events. RESULTS: We have validated our pipeline using four sets of Plasmodium falciparum drug resistant data containing 26 clones from 3D7 and Dd2 background strains, identifying an average of 11 single nucleotide variants per clone. We also identify 8 copy number variants with contributions to resistance, and report for the first time that all analyzed amplification events are in tandem. CONCLUSIONS: The Platypus pipeline provides malaria researchers with a powerful tool to analyze short read sequencing data. It provides an accurate way to detect SNVs using known software packages, and a novel methodology for detection of CNVs, though it does not currently support detection of small indels. We have validated that the pipeline detects known SNVs in a variety of samples while filtering out spurious data. We bundle the methods into a freely available package.


Assuntos
Variações do Número de Cópias de DNA/genética , Genoma de Protozoário/genética , Genômica/métodos , Plasmodium falciparum/genética , Software , Antimaláricos/farmacologia , DNA de Protozoário/genética , Resistência a Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos
2.
Genome Biol ; 10(2): R21, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19216790

RESUMO

BACKGROUND: The identification of genetic changes that confer drug resistance or other phenotypic changes in pathogens can help optimize treatment strategies, support the development of new therapeutic agents, and provide information about the likely function of genes. Elucidating mechanisms of phenotypic drug resistance can also assist in identifying the mode of action of uncharacterized but potent antimalarial compounds identified in high-throughput chemical screening campaigns against Plasmodium falciparum. RESULTS: Here we show that tiling microarrays can detect de novo a large proportion of the genetic changes that differentiate one genome from another. We show that we detect most single nucleotide polymorphisms or small insertion deletion events and all known copy number variations that distinguish three laboratory isolates using readily accessible methods. We used the approach to discover mutations that occur during the selection process after transfection. We also elucidated a mechanism by which parasites acquire resistance to the antimalarial fosmidomycin, which targets the parasite isoprenoid synthesis pathway. Our microarray-based approach allowed us to attribute in vitro derived fosmidomycin resistance to a copy number variation event in the pfdxr gene, which enables the parasite to overcome fosmidomycin-mediated inhibition of isoprenoid biosynthesis. CONCLUSIONS: We show that newly emerged single nucleotide polymorphisms can readily be detected and that malaria parasites can rapidly acquire gene amplifications in response to in vitro drug pressure. The ability to define comprehensively genetic variability in P. falciparum with a single overnight hybridization creates new opportunities to study parasite evolution and improve the treatment and control of malaria.


Assuntos
Resistência a Medicamentos/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Plasmodium falciparum/efeitos dos fármacos , Fosfomicina/análogos & derivados , Fosfomicina/farmacologia , Amplificação de Genes , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...