Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 168: 107476, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36067553

RESUMO

Human biomonitoring (HBM) is a crucial approach for exposure assessment, as emphasised in the European Commission's Chemicals Strategy for Sustainability (CSS). HBM can help to improve chemical policies in five major key areas: (1) assessing internal and aggregate exposure in different target populations; 2) assessing exposure to chemicals across life stages; (3) assessing combined exposure to multiple chemicals (mixtures); (4) bridging regulatory silos on aggregate exposure; and (5) enhancing the effectiveness of risk management measures. In this strategy paper we propose a vision and a strategy for the use of HBM in chemical regulations and public health policy in Europe and beyond. We outline six strategic objectives and a roadmap to further strengthen HBM approaches and increase their implementation in the regulatory risk assessment of chemicals to enhance our understanding of exposure and health impacts, enabling timely and targeted policy interventions and risk management. These strategic objectives are: 1) further development of sampling strategies and sample preparation; 2) further development of chemical-analytical HBM methods; 3) improving harmonisation throughout the HBM research life cycle; 4) further development of quality control / quality assurance throughout the HBM research life cycle; 5) obtain sustained funding and reinforcement by legislation; and 6) extend target-specific communication with scientists, policymakers, citizens and other stakeholders. HBM approaches are essential in risk assessment to address scientific, regulatory and societal challenges. HBM requires full and strong support from the scientific and regulatory domain to reach its full potential in public and occupational health assessment and in regulatory decision-making.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35627658

RESUMO

Regulating chemical mixtures is a complex scientific and policy task. The aim of this study was to investigate typical mixtures and their potential risks based on internal exposure levels in the European population. Based on human biomonitoring (HBM) data made available via the HBM4EU project, we derived generic mixtures representative of a median (P50) and a worst-case scenario (P95) for adults and children. We performed a mixture risk assessment based on HBM concentrations, health-based guidance values (HBGVs) as internal thresholds of concern, and the conservative assumption of concentration addition applied across different toxicological endpoints. Maximum cumulative ratios (MCRs) were calculated to characterize the mixture risk. The mixtures comprise 136 biomarkers for adults and 84 for children, although concentration levels could be quantified only for a fraction of these. Due to limited availability of HBGVs, the mixture risk was assessed for a subset of 20 substance-biomarker pairs for adults and 17 for children. The mixture hazard index ranged from 2.8 (P50, children) to 9.2 (P95, adults). Six to seven substances contributed to over 95% of the total risk. MCR values ranged between 2.6 and 5.5, which is in a similar range as in previous studies based on human external exposures assessments. The limited coverage of substances included in the calculations and the application of a hazard index across toxicological endpoints argue for caution in the interpretation of the results. Nonetheless the analyses of MCR and MAFceiling can help inform a possible mixture assessment factor (MAF) applicable to single substance risk assessment to account for exposure to unintentional mixtures.


Assuntos
Monitoramento Biológico , Adulto , Criança , Humanos , Medição de Risco/métodos
3.
Reprod Toxicol ; 105: 101-119, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34455033

RESUMO

Prenatal and postnatal co-exposure to multiple chemicals at the same time may have deleterious effects on the developing nervous system. We previously showed that chemicals acting through similar mode of action (MoA) and grouped based on perturbation of brain derived neurotrophic factor (BDNF), induced greater neurotoxic effects on human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes compared to chemicals with dissimilar MoA. Here we assessed the effects of repeated dose (14 days) treatments with mixtures containing the six chemicals tested in our previous study (Bisphenol A, Chlorpyrifos, Lead(II) chloride, Methylmercury chloride, PCB138 and Valproic acid) along with 2,2'4,4'-tetrabromodiphenyl ether (BDE47), Ethanol, Vinclozolin and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)), on hiPSC-derived neural stem cells undergoing differentiation toward mixed neurons/astrocytes up to 21 days. Similar MoA chemicals in mixtures caused an increase of BDNF levels and neurite outgrowth, and a decrease of synapse formation, which led to inhibition of electrical activity. Perturbations of these endpoints are described as common key events in adverse outcome pathways (AOPs) specific for DNT. When compared with mixtures tested in our previous study, adding similarly acting chemicals (BDE47 and EtOH) to the mixture resulted in a stronger downregulation of synapses. A synergistic effect on some synaptogenesis-related features (PSD95 in particular) was hypothesized upon treatment with tested mixtures, as indicated by mathematical modelling. Our findings confirm that the use of human iPSC-derived mixed neuronal/glial models applied to a battery of in vitro assays anchored to key events in DNT AOP networks, combined with mathematical modelling, is a suitable testing strategy to assess in vitro DNT induced by chemical mixtures.


Assuntos
Bioensaio , Modelos Teóricos , Síndromes Neurotóxicas , Astrócitos/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Clorpirifos/toxicidade , Etanol/toxicidade , Éteres Difenil Halogenados/toxicidade , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Chumbo/toxicidade , Compostos de Metilmercúrio/toxicidade , Células-Tronco Neurais/citologia , Neurônios/efeitos dos fármacos , Oxazóis/toxicidade , Fenóis/toxicidade , Bifenilos Policlorados/toxicidade , Dibenzodioxinas Policloradas/toxicidade , Ácido Valproico/toxicidade
4.
Arch Toxicol ; 95(6): 1867-1897, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33851225

RESUMO

The EU Directive 2010/63/EU   on the protection of animals used for scientific purposes and other EU regulations, such as REACH and the Cosmetic Products Regulation advocate for a change in the way toxicity testing is conducted. Whilst the Cosmetic Products Regulation bans animal testing altogether, REACH aims for a progressive shift from in vivo testing towards quantitative in vitro and computational approaches. Several endpoints can already be addressed using non-animal approaches including skin corrosion and irritation, serious eye damage and irritation, skin sensitisation, and mutagenicity and genotoxicity. However, for systemic effects such as acute toxicity, repeated dose toxicity and reproductive and developmental toxicity, evaluation of chemicals under REACH still heavily relies on animal tests. Here we summarise current EU regulatory requirements for the human health assessment of chemicals under REACH and the Cosmetic Products Regulation, considering the more critical endpoints and identifying the main challenges in introducing alternative methods into regulatory testing practice. This supports a recent initiative taken by the International Cooperation on Alternative Test Methods (ICATM) to summarise current regulatory requirements specific for the assessment of chemicals and cosmetic products for several human health-related endpoints, with the aim of comparing different jurisdictions and coordinating the promotion and ultimately the implementation of non-animal approaches worldwide. Recent initiatives undertaken at European level to promote the 3Rs and the use of alternative methods in current regulatory practice are also discussed.


Assuntos
Alternativas aos Testes com Animais/legislação & jurisprudência , Cosméticos/legislação & jurisprudência , Testes de Toxicidade/métodos , Alternativas aos Testes com Animais/métodos , Animais , Cosméticos/toxicidade , União Europeia , Humanos , Cooperação Internacional , Medição de Risco/legislação & jurisprudência , Medição de Risco/métodos
5.
Environ Int ; 146: 106206, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120228

RESUMO

BACKGROUND: Several reviews of synergisms and antagonisms in chemical mixtures have concluded that synergisms are relatively rare. However, these reviews focused on mixtures composed of specific groups of chemicals, such as pesticides or metals and on toxicity endpoints mostly relevant to ecotoxicology. Doubts remain whether these findings can be generalised. A systematic review not restricted to specific chemical mixtures and including mammalian and human toxicity endpoints is missing. OBJECTIVES: We conducted a systematic review and quantitative reappraisal of 10 years' of experimental mixture studies to investigate the frequency and reliability of evaluations of mixture effects as synergistic or antagonistic. Unlike previous reviews, we did not limit our efforts to certain groups of chemicals or specific toxicity outcomes and covered mixture studies relevant to ecotoxicology and human/mammalian toxicology published between 2007 and 2017. DATA SOURCES, ELIGIBILITY CRITERIA: We undertook searches for peer-reviewed articles in PubMed, Web of Science, Scopus, GreenFile, ScienceDirect and Toxline and included studies of controlled exposures of environmental chemical pollutants, defined as unintentional exposures leading to unintended effects. Studies with viruses, prions or therapeutic agents were excluded, as were records with missing details on chemicals' identities, toxicities, doses, or concentrations. STUDY APPRAISAL AND SYNTHESIS METHODS: To examine the internal validity of studies we developed a risk-of-bias tool tailored to mixture toxicology. For a subset of 388 entries that claimed synergisms or antagonisms, we conducted a quantitative reappraisal of authors' evaluations by deriving ratios of predicted and observed effective mixture doses (concentrations). RESULTS: Our searches produced an inventory of 1220 mixture experiments which we subjected to subgroup analyses. Approximately two thirds of studies did not incorporate more than 2 components. Most experiments relied on low-cost assays with readily quantifiable endpoints. Important toxicity outcomes of relevance for human risk assessment (e.g. carcinogenicity, genotoxicity, reproductive toxicity, immunotoxicity, neurotoxicity) were rarely addressed. The proportion of studies that declared additivity, synergism or antagonisms was approximately equal (one quarter each); the remaining quarter arrived at different evaluations. About half of the 1220 entries were rated as "definitely" or "probably" low risk of bias. Strikingly, relatively few claims of synergistic or antagonistic effects stood up to scrutiny in terms of deviations from expected additivity that exceed the boundaries of acceptable between-study variability. In most cases, the observed mixture doses were not more than two-fold higher or lower than the predicted additive doses. Twenty percent of the entries (N = 78) reported synergisms in excess of that degree of deviation. Our efforts of pinpointing specific factors that predispose to synergistic interactions confirmed previous concerns about the synergistic potential of combinations of triazine, azole and pyrethroid pesticides at environmentally relevant doses. New evidence of synergisms with endocrine disrupting chemicals and metal compounds such as chromium (VI) and nickel in combination with cadmium has emerged. CONCLUSIONS, LIMITATIONS AND IMPLICATIONS: These specific cases of synergisms apart, our results confirm the utility of default application of the dose (concentration) addition concept for predictive assessments of simultaneous exposures to multiple chemicals. However, this strategy must be complemented by an awareness of the synergistic potential of specific classes of chemicals. Our conclusions only apply to the chemical space captured in published mixture studies which is biased towards relatively well-researched chemicals. SYSTEMATIC REVIEW REGISTRATION NUMBER: The final protocol was published on the open-access repository Zenodo and attributed the following digital object identifier, doi: https://doi.org//10.5281/zenodo.1319759 (https://zenodo.org/record/1319759#.XXIzdy7dsqM).


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Praguicidas , Animais , Interações Medicamentosas , Poluentes Ambientais/toxicidade , Humanos , Praguicidas/toxicidade , Reprodutibilidade dos Testes
6.
Environ Int ; 143: 105978, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32763630

RESUMO

Human biomonitoring (HBM) data can provide insight into co-exposure patterns resulting from exposure to multiple chemicals from various sources and over time. Therefore, such data are particularly valuable for assessing potential risks from combined exposure to multiple chemicals. One way to interpret HBM data is establishing safe levels in blood or urine, called Biomonitoring Equivalents (BE) or HBM health based guidance values (HBM-HBGV). These can be derived by converting established external reference values, such as tolerable daily intake (TDI) values. HBM-HBGV or BE values are so far agreed only for a very limited number of chemicals. These values can be established using physiologically based kinetic (PBK) modelling, usually requiring substance specific models and the collection of many input parameters which are often not available or difficult to find in the literature. The aim of this study was to investigate the suitability and limitations of generic PBK models in deriving BE values for several compounds with a view to facilitating the use of HBM data in the assessment of chemical mixtures at a screening level. The focus was on testing the methodology with two generic models, the IndusChemFate tool and High-Throughput Toxicokinetics package, for two different classes of compounds, phenols and phthalates. HBM data on Danish children and on Norwegian mothers and children were used to evaluate the quality of the predictions and to illustrate, by means of a case study, the overall approach of applying PBK models to chemical classes with HBM data in the context of chemical mixture risk assessment. Application of PBK models provides a better understanding and interpretation of HBM data. However, the study shows that establishing safety threshold levels in urine is a difficult and complex task. The approach might be more straightforward for more persistent chemicals that are analysed as parent compounds in blood but high uncertainties have to be considered around simulated metabolite concentrations in urine. Refining the models may reduce these uncertainties and improve predictions. Based on the experience gained with this study, the performance of the models for other chemicals could be investigated, to improve the accuracy of the simulations.


Assuntos
Monitoramento Biológico , Monitoramento Ambiental , Criança , Humanos , Nível de Efeito Adverso não Observado , Valores de Referência , Medição de Risco
7.
Int J Hyg Environ Health ; 227: 113515, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32305857

RESUMO

BACKGROUND: The European Commission has developed and put in place the Information Platform for Chemical Monitoring Data (IPCHEM), to promote a more coherent approach to the generation, collection, storage and use of chemical monitoring data in relation to humans and the environment. OBJECTIVES: This paper describes the specific development of the IPCHEM thematic module "Products and Indoor Air Data" which aims to facilitate the retrieval of and access to existing and future chemical monitoring data sources stemming from e.g. national monitoring programs of EU Member States and EU funded projects. The current development focusses on harmonised data and metadata templates and code lists related to indoor air monitoring data. METHODS: The extension and revision of the IPCHEM metadata and data collection templates for indoor air monitoring data was based on harmonisation and standardisation efforts on the development of indoor air monitoring protocols and guidelines for monitoring indoor pollution attributed to chemical and biological stressors, which were undertaken by European Commission Services, EU funded projects and research networks and EU Members States. RESULTS: A list of ten candidate data collections for potential integration were identified and prioritised. A different level of relevance was attributed to the enhanced metadata and data elements (mandatory, recommended, optional) to allow for their flexible applicability by end users. These elements should be provided for reaching the required quality in the data documentation as well as for ensuring a correct data traceability and interpretation. CONCLUSIONS: The proposed enhanced metadata and data models of the IPCHEM thematic module "Products and Indoor Air Data" can be used by data providers when planning and setting up their future indoor air monitoring campaigns, or to further mapping and harmonising data elements of their existing data collections for further integration into IPCHEM. This will boost the effective implementation of a coordinated approach for collecting, accessing and sharing existing and future indoor air monitoring data in support of policy making.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Europa (Continente) , Metadados , Modelos Teóricos
8.
Environ Health ; 19(1): 23, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32093744

RESUMO

BACKGROUND: In light of the vulnerability of the developing brain, mixture risk assessment (MRA) for the evaluation of developmental neurotoxicity (DNT) should be implemented, since infants and children are co-exposed to more than one chemical at a time. One possible approach to tackle MRA could be to cluster DNT chemicals in a mixture on the basis of their mode of action (MoA) into 'similar' and 'dissimilar', but still contributing to the same adverse outcome, and anchor DNT assays to common key events (CKEs) identified in DNT-specific adverse outcome pathways (AOPs). Moreover, the use of human in vitro models, such as induced pluripotent stem cell (hiPSC)-derived neuronal and glial cultures would enable mechanistic understanding of chemically-induced adverse effects, avoiding species extrapolation. METHODS: HiPSC-derived neural progenitors differentiated into mixed cultures of neurons and astrocytes were used to assess the effects of acute (3 days) and repeated dose (14 days) treatments with single chemicals and in mixtures belonging to different classes (i.e., lead(II) chloride and methylmercury chloride (heavy metals), chlorpyrifos (pesticide), bisphenol A (organic compound and endocrine disrupter), valproic acid (drug), and PCB138 (persistent organic pollutant and endocrine disrupter), which are associated with cognitive deficits, including learning and memory impairment in children. Selected chemicals were grouped based on their mode of action (MoA) into 'similar' and 'dissimilar' MoA compounds and their effects on synaptogenesis, neurite outgrowth, and brain derived neurotrophic factor (BDNF) protein levels, identified as CKEs in currently available AOPs relevant to DNT, were evaluated by immunocytochemistry and high content imaging analysis. RESULTS: Chemicals working through similar MoA (i.e., alterations of BDNF levels), at non-cytotoxic (IC20/100), very low toxic (IC5), or moderately toxic (IC20) concentrations, induce DNT effects in mixtures, as shown by increased number of neurons, impairment of neurite outgrowth and synaptogenesis (the most sensitive endpoint as confirmed by mathematical modelling) and increase of BDNF levels, to a certain extent reproducing autism-like cellular changes observed in the brain of autistic children. CONCLUSIONS: Our findings suggest that the use of human iPSC-derived mixed neuronal/glial cultures applied to a battery of assays anchored to key events of an AOP network represents a valuable approach to identify mixtures of chemicals with potential to cause learning and memory impairment in children.


Assuntos
Rotas de Resultados Adversos , Poluentes Ambientais/toxicidade , Síndromes Neurotóxicas/etiologia , Neurotoxinas/toxicidade , Disruptores Endócrinos/toxicidade , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Metais Pesados/toxicidade , Células-Tronco Neurais/efeitos dos fármacos , Praguicidas/toxicidade , Bifenilos Policlorados/toxicidade , Medição de Risco , Testes de Toxicidade
9.
Sci Total Environ ; 693: 133510, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31357034

RESUMO

OBJECTIVES: There is growing evidence that single substances present below their individual thresholds of effect may still contribute to combined effects. In component-based mixture risk assessment (MRA), the risks can be addressed using information on the mixture components. This is, however, often hampered by limited availability of ecotoxicity data. Here, the possible use of ecotoxicological threshold concentrations of no concern (i.e. 5th percentile of statistical distribution of ecotoxicological values) is investigated to fill data gaps in MRA. METHODS: For chemicals without available aquatic toxicity data, ecotoxicological threshold concentrations of no concern have been derived from Predicted No Effect Concentration (PNEC) distributions and from chemical toxicity distributions, using the EnviroTox tool, with and without considering the chemical mode of action. For exposure, chemical monitoring data from European rivers have been used to illustrate four realistic co-exposure scenarios. Based on those monitoring data and available ecotoxicity data or threshold concentrations when no data were available, Risk Quotients for individual chemicals were calculated, to then derive a mixture Risk Quotient (RQmix). RESULTS: A risk was identified in two of the four scenarios. Threshold concentrations contribute from 24 to 95% of the whole RQmix; thus they have a large impact on the predicted mixture risk. Therefore they could only be used for data gap filling for a limited number of chemicals in the mixture. The use of mode of action information to derive more specific threshold values could be a helpful refinement in some cases.

10.
Comput Toxicol ; 10: 158-168, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31218267

RESUMO

The role of Physiologically Based Kinetic (PBK) modelling in assessing mixture toxicology has been growing for the last three decades. It has been widely used to investigate and address interactions in mixtures. This review describes the current state-of-the-art of PBK models for chemical mixtures and to evaluate the applications of PBK modelling for mixtures with emphasis on their role in chemical risk assessment. A total of 35 mixture PBK models were included after searching web resources (Scopus, PubMed, Web of Science, and Google Scholar), screening for duplicates, and excluding articles based on eligibility criteria. Binary mixtures and volatile organic compounds accounted for two-thirds of the chemical mixtures identified. The most common exposure route and modelled system were found to be inhalation and rats respectively. Twenty two (22) models were for binary mixtures, 5 for ternary mixtures, 3 for quaternary mixtures, and 5 for complex mixtures. Both bottom-up and top-down PBK modelling approaches are described. Whereas bottom-up approaches are based on a series of binary interactions, top-down approaches are based on the lumping of mixture components. Competitive inhibition is the most common type of interaction among the various types of mixtures, and usually becomes a concern at concentrations higher than environmental exposure levels. It leads to reduced biotransformation that either means a decrease in the amount of toxic metabolite formation or an increase in toxic parent chemical accumulation. The consequence is either lower or higher toxicity compared to that estimated for the mixture based on the additivity principle. Therefore, PBK modelling can play a central role in predicting interactions in chemical mixture risk assessment.

11.
Crit Rev Toxicol ; 49(2): 174-189, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30931677

RESUMO

This paper summarizes current challenges, the potential use of novel scientific methodologies, and ways forward in the risk assessment and risk management of mixtures. Generally, methodologies to address mixtures have been agreed; however, there are still several data and methodological gaps to be addressed. New approach methodologies can support the filling of knowledge gaps on the toxicity and mode(s) of action of individual chemicals. (Bio)Monitoring, modeling, and better data sharing will support the derivation of more realistic co-exposure scenarios. As knowledge and data gaps often hamper an in-depth assessment of specific chemical mixtures, the option of taking account of possible mixture effects in single substance risk assessments is briefly discussed. To allow risk managers to take informed decisions, transparent documentation of assumptions and related uncertainties is recommended indicating the potential impact on the assessment. Considering the large number of possible combinations of chemicals in mixtures, prioritization is needed, so that actions first address mixtures of highest concern and chemicals that drive the mixture risk. As chemicals with different applications and regulated separately might lead to similar toxicological effects, it is important to consider chemical mixtures across legislative sectors.


Assuntos
Exposição Ambiental , Política Ambiental , Substâncias Perigosas , Humanos , Medição de Risco
12.
Environ Health Perspect ; 126(8): 84502, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30235423

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are man-made chemicals that contain at least one perfluoroalkyl moiety, [Formula: see text]. To date, over 4,000 unique PFASs have been used in technical applications and consumer products, and some of them have been detected globally in human and wildlife biomonitoring studies. Because of their extraordinary persistence, human and environmental exposure to PFASs will be a long-term source of concern. Some PFASs such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) have been investigated extensively and thus regulated, but for many other PFASs, knowledge about their current uses and hazards is still very limited or missing entirely. To address this problem and prepare an action plan for the assessment and management of PFASs in the coming years, a group of more than 50 international scientists and regulators held a two-day workshop in November, 2017. The group identified both the respective needs of and common goals shared by the scientific and the policy communities, made recommendations for cooperative actions, and outlined how the science-policy interface regarding PFASs can be strengthened using new approaches for assessing and managing highly persistent chemicals such as PFASs. https://doi.org/10.1289/EHP4158.


Assuntos
Exposição Ambiental/prevenção & controle , Poluentes Ambientais , Poluição Ambiental/prevenção & controle , Fluorocarbonos , Monitoramento Ambiental , Humanos
13.
Environ Int ; 120: 544-562, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30170309

RESUMO

Humans and wildlife are exposed to an intractably large number of different combinations of chemicals via food, water, air, consumer products, and other media and sources. This raises concerns about their impact on public and environmental health. The risk assessment of chemicals for regulatory purposes mainly relies on the assessment of individual chemicals. If exposure to multiple chemicals is considered in a legislative framework, it is usually limited to chemicals falling within this framework and co-exposure to chemicals that are covered by a different regulatory framework is often neglected. Methodologies and guidance for assessing risks from combined exposure to multiple chemicals have been developed for different regulatory sectors, however, a harmonised, consistent approach for performing mixture risk assessments and management across different regulatory sectors is lacking. At the time of this publication, several EU research projects are running, funded by the current European Research and Innovation Programme Horizon 2020 or the Seventh Framework Programme. They aim at addressing knowledge gaps and developing methodologies to better assess chemical mixtures, by generating and making available internal and external exposure data, developing models for exposure assessment, developing tools for in silico and in vitro effect assessment to be applied in a tiered framework and for grouping of chemicals, as well as developing joint epidemiological-toxicological approaches for mixture risk assessment and for prioritising mixtures of concern. The projects EDC-MixRisk, EuroMix, EUToxRisk, HBM4EU and SOLUTIONS have started an exchange between the consortia, European Commission Services and EU Agencies, in order to identify where new methodologies have become available and where remaining gaps need to be further addressed. This paper maps how the different projects contribute to the data needs and assessment methodologies and identifies remaining challenges to be further addressed for the assessment of chemical mixtures.


Assuntos
Misturas Complexas , Exposição Ambiental , Substâncias Perigosas , Medição de Risco , Animais , União Europeia , Humanos , Pesquisa
14.
Toxicol Appl Pharmacol ; 354: 7-18, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29476865

RESUMO

Currently, the identification of chemicals that have the potential to induce developmental neurotoxicity (DNT) is based on animal testing. Since at the regulatory level, systematic testing of DNT is not a standard requirement within the EU or USA chemical legislation safety assessment, DNT testing is only performed in higher tiered testing triggered based on chemical structure activity relationships or evidence of neurotoxicity in systemic acute or repeated dose toxicity studies. However, these triggers are rarely used and, in addition, do not always serve as reliable indicators of DNT, as they are generally based on observations in adult rodents. Therefore, there is a pressing need for developing alternative methodologies that can reliably support identification of DNT triggers, and more rapidly and cost-effectively support the identification and characterization of chemicals with DNT potential. We propose to incorporate mechanistic knowledge and data derived from in vitro studies to support various regulatory applications including: (a) the identification of potential DNT triggers, (b) initial chemical screening and prioritization, (c) hazard identification and characterization, (d) chemical biological grouping, and (e) assessment of exposure to chemical mixtures. Ideally, currently available cellular neuronal/glial models derived from human induced pluripotent stem cells (hiPSCs) should be used as they allow evaluation of chemical impacts on key neurodevelopmental processes, by reproducing different windows of exposure during human brain development. A battery of DNT in vitro test methods derived from hiPSCs could generate valuable mechanistic data, speeding up the evaluation of thousands of compounds present in industrial, agricultural and consumer products that lack safety data on DNT potential.


Assuntos
Sistema Nervoso/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Testes de Toxicidade , Toxicologia/métodos , Alternativas aos Testes com Animais , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/embriologia , Síndromes Neurotóxicas/metabolismo , Formulação de Políticas , Relação Quantitativa Estrutura-Atividade , Medição de Risco , Toxicologia/legislação & jurisprudência
15.
Environ Toxicol Chem ; 36(12): 3450-3462, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28618056

RESUMO

The scientific consensus model USEtox® is recommended by the European Commission as the reference model to characterize life cycle chemical emissions in terms of their potential human toxicity and freshwater aquatic ecotoxicity impacts in the context of the International Reference Life Cycle Data System Handbook and the Environmental Footprint pilot phase looking at products (PEF) and organizations (OEF). Consequently, this model has been systematically used within the PEF/OEF pilot phase by 25 European Union industry sectors, which manufacture a wide variety of consumer products. This testing phase has raised some questions regarding the derivation of and the data used for the chemical-specific freshwater ecotoxicity effect factor in USEtox. For calculating the potential freshwater aquatic ecotoxicity impacts, USEtox bases the effect factor on the chronic hazard concentration (HC50) value for a chemical calculated as the arithmetic mean of all logarithmized geometric means of species-specific chronic median lethal (or effect) concentrations (L[E]C50). We investigated the dependency of the USEtox effect factor on the selection of ecotoxicological data source and toxicological endpoints, and we found that both influence the ecotoxicity ranking of chemicals and may hence influence the conclusions of a PEF/OEF study. We furthermore compared the average measure (HC50) with other types of ecotoxicity effect indicators, such as the lowest species EC50 or no-observable-effect concentration, frequently used in regulatory risk assessment, and demonstrated how they may also influence the ecotoxicity ranking of chemicals. We acknowledge that these indicators represent different aspects of a chemical's ecotoxicity potential and discuss their pros and cons for a comparative chemical assessment as performed in life cycle assessment and in particular within the PEF/OEF context. Environ Toxicol Chem 2017;36:3450-3462. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Ecotoxicologia/métodos , Poluentes Ambientais/análise , Água Doce/química , Substâncias Perigosas/análise , Bases de Dados Factuais , Poluentes Ambientais/toxicidade , Substâncias Perigosas/toxicidade , Humanos , Modelos Teóricos , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
Environ Int ; 99: 97-106, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27939949

RESUMO

The exposome encompasses an individual's exposure to exogenous chemicals, as well as endogenous chemicals that are produced or altered in response to external stressors. While the exposome concept has been established for human health, its principles can be extended to include broader ecological issues. The assessment of exposure is tightly interlinked with hazard assessment. Here, we explore if mechanistic understanding of the causal links between exposure and adverse effects on human health and the environment can be improved by integrating the exposome approach with the adverse outcome pathway (AOP) concept that structures and organizes the sequence of biological events from an initial molecular interaction of a chemical with a biological target to an adverse outcome. Complementing exposome research with the AOP concept may facilitate a mechanistic understanding of stress-induced adverse effects, examine the relative contributions from various components of the exposome, determine the primary risk drivers in complex mixtures, and promote an integrative assessment of chemical risks for both human and environmental health.


Assuntos
Exposição Ambiental , Poluentes Ambientais/toxicidade , Animais , Humanos , Medição de Risco
17.
Regul Toxicol Pharmacol ; 80: 321-34, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27211294

RESUMO

This paper reviews regulatory requirements and recent case studies to illustrate how the risk assessment (RA) of chemical mixtures is conducted, considering both the effects on human health and on the environment. A broad range of chemicals, regulations and RA methodologies are covered, in order to identify mixtures of concern, gaps in the regulatory framework, data needs, and further work to be carried out. Also the current and potential future use of novel tools (Adverse Outcome Pathways, in silico tools, toxicokinetic modelling, etc.) in the RA of combined effects were reviewed. The assumptions made in the RA, predictive model specifications and the choice of toxic reference values can greatly influence the assessment outcome, and should therefore be specifically justified. Novel tools could support mixture RA mainly by providing a better understanding of the underlying mechanisms of combined effects. Nevertheless, their use is currently limited because of a lack of guidance, data, and expertise. More guidance is needed to facilitate their application. As far as the authors are aware, no prospective RA concerning chemicals related to various regulatory sectors has been performed to date, even though numerous chemicals are registered under several regulatory frameworks.


Assuntos
Misturas Complexas/efeitos adversos , Cosméticos/efeitos adversos , Regulamentação Governamental , Substâncias Perigosas/efeitos adversos , Política Pública/legislação & jurisprudência , Política Pública/tendências , Testes de Toxicidade , Poluentes Químicos da Água/efeitos adversos , Animais , Qualidade de Produtos para o Consumidor/legislação & jurisprudência , Relação Dose-Resposta a Droga , Política Ambiental/legislação & jurisprudência , Política Ambiental/tendências , Política de Saúde/legislação & jurisprudência , Política de Saúde/tendências , Humanos , Formulação de Políticas , Medição de Risco
18.
Integr Environ Assess Manag ; 12(1): 67-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26119989

RESUMO

Standard risk assessment of plant protection products (PPP) combines "worst-case" exposure scenarios with effect thresholds using assessment (safety) factors to account for uncertainties. If needed, risks can be addressed applying more realistic conditions at higher tiers, which refine exposure and/or effect assessments using additional data. However, it is not possible to investigate the wide range of potential scenarios experimentally. In contrast, ecotoxicological mechanistic effect models do allow for addressing a multitude of scenarios. Furthermore, they may aid the interpretation of experiments such as mesocosm studies, allowing extrapolation to conditions not covered in experiments. Here, we explore how to use mechanistic effect models in the aquatic risk assessment of a model insecticide (Modelmethrin), applied several times per season but rapidly dissipating between applications. The case study focuses on potential effects on aquatic arthropods, the most sensitive group for this substance. The models provide information on the impact of a number of short exposure pulses on sensitive and/or vulnerable populations and, when impacted, assess recovery. The species to model were selected based on their sensitivity in laboratory and field (mesocosm) studies. The general unified threshold model for survival (GUTS) model, which describes the toxicokinetics and toxicodynamics of chemicals in individuals, was linked to 3 individual-based models (IBM), translating individual survival of sensitive organisms into population-level effects. The impact of pulsed insecticide exposures on populations were modeled using the spatially explicit IBM metapopulation model for assessing spatial and temporal effects of pesticides (MASTEP) for Gammarus pulex, the Chaoborus IBM for populations of Chaoborus crystallinus, and the "IdamP" model for populations of Daphnia magna. The different models were able to predict the potential effects of Modelmethrin applications to key arthropod species inhabiting different aquatic ecosystems; the most sensitive species were significantly impacted unless respective mitigation measures were implemented (buffer zones resulting in reduced exposure). As expected the impact was stronger in shallow ditches as compared to deeper pond scenarios. Furthermore, as expected, recovery depended on factors such as temperature (affecting population growth rate and number of generations) and the occurence of nonimpacted aquatic ecosystems (their frequency and connectivity). These model predictions were largely in line with field observations and/or the results of a mesocosm study, providing additional evidence on the suitability and reliability of the models for risk assessment purposes. Because of their flexibility, models may predict the likelihood of unacceptable effects-based on previously defined protection goals-for a range of insecticide exposure scenarios and freshwater habitats.


Assuntos
Ecossistema , Exposição Ambiental , Invertebrados/efeitos dos fármacos , Praguicidas/toxicidade , Poluentes Químicos da Água/análise , Animais , Ecotoxicologia , Inseticidas/metabolismo , Inseticidas/toxicidade , Modelos Biológicos , Praguicidas/análise , Praguicidas/metabolismo , Medição de Risco/métodos , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
19.
Sci Total Environ ; 415: 31-8, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21733564

RESUMO

General protection goals for the environmental risk assessment (ERA) of plant protection products are stated in European legislation but specific protection goals (SPGs) are often not precisely defined. These are however crucial for designing appropriate risk assessment schemes. The process followed by the Panel on Plant Protection Products and their Residues (PPR) of the European Food Safety Authority (EFSA) as well as examples of resulting SPGs obtained so far for environmental risk assessment (ERA) of pesticides is presented. The ecosystem services approach was used as an overarching concept for the development of SPGs, which will likely facilitate communication with stakeholders in general and risk managers in particular. It is proposed to develop SPG options for 7 key drivers for ecosystem services (microbes, algae, non target plants (aquatic and terrestrial), aquatic invertebrates, terrestrial non target arthropods including honeybees, terrestrial non-arthropod invertebrates, and vertebrates), covering the ecosystem services that could potentially be affected by the use of pesticides. These SPGs need to be defined in 6 dimensions: biological entity, attribute, magnitude, temporal and geographical scale of the effect, and the degree of certainty that the specified level of effect will not be exceeded. In general, to ensure ecosystem services, taxa representative for the key drivers identified need to be protected at the population level. However, for some vertebrates and species that have a protection status in legislation, protection may be at the individual level. To protect the provisioning and supporting services provided by microbes it may be sufficient to protect them at the functional group level. To protect biodiversity impacts need to be assessed at least at the scale of the watershed/landscape.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Praguicidas/análise , Conservação dos Recursos Naturais , Medição de Risco
20.
PLoS One ; 6(11): e26985, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22073232

RESUMO

Diatoms are unicellular, photosynthetic, eukaryotic algae with a ubiquitous distribution in water environments and they play an important role in the carbon cycle. Molecular or morphological changes in these species under ecological stress conditions are expected to serve as early indicators of toxicity and can point to a global impact on the entire ecosystem. Thalassiosira pseudonana, a marine diatom and the first with a fully sequenced genome has been selected as an aquatic model organism for ecotoxicological studies using molecular tools. A customized DNA microarray containing probes for the available gene sequences has been developed and tested to analyze the effects of a common pollutant, benzo(a)pyrene (BaP), at a sub-lethal concentration. This approach in diatoms has helped to elucidate pathway/metabolic processes involved in the mode of action of this pollutant, including lipid metabolism, silicon metabolism and stress response. A dose-response of BaP on diatoms has been made and the effect of this compound on the expression of selected genes was assessed by quantitative real time-PCR. Up-regulation of the long-chain acyl-CoA synthetase and the anti-apoptotic transmembrane Bax inhibitor, as well as down-regulation of silicon transporter 1 and a heat shock factor was confirmed at lower concentrations of BaP, but not the heat-shock protein 20. The study has allowed the identification of molecular biomarkers to BaP to be later on integrated into environmental monitoring for water quality assessment.


Assuntos
Benzo(a)pireno/toxicidade , Diatomáceas/efeitos dos fármacos , Transcriptoma , Poluentes Químicos da Água/toxicidade , Sequência de Bases , Primers do DNA , Diatomáceas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...