Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anticancer Res ; 37(2): 455-463, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28179290

RESUMO

BACKGROUND/AIM: Combining an anticancer agent fenretinide (HPR) or C6-pyridinium ceramide (LCL29) with Foscan-mediated photodynamic therapy (FoscanPDT) is expected to augment anticancer benefits of each substance. We showed that treatment with FoscanPDT+HPR enhanced accumulation of C16-dihydroceramide, and that fumonisin B1 (FB), an inhibitor of ceramide synthase, counteracted caspase-3 activation and colony-forming ability of head and neck squamous cell carcinoma (HNSCC) cells. Because cancer cells appear to be more susceptible to increased levels of the endoplasmic reticulum (ER) stress than normal cells, herein we tested the hypothesis that FoscanPDT combined with HPR or LCL29 induces FB-sensitive ER stress-associated apoptosis that affects cell survival. MATERIALS AND METHODS: Using an HNSCC cell line, we determined: cell survival by clonogenic assay, caspase-3 activity by spectrofluorometry, the expression of the ER markers BiP and CHOP by quantitative real-time polymerase chain reaction and western immunoblotting, and sphingolipid levels by mass spectrometry. RESULTS: Similar to HPR+FoscanPDT, LCL29+FoscanPDT induced enhanced loss of clonogenicity and caspase-3 activation, that were both inhibited by FB. Our additional pharmacological evidence showed that the enhanced loss of clonogenicity after the combined treatments was singlet oxygen-, ER stress- and apoptosis-dependent. The combined treatments induced enhanced, FB-sensitive, up-regulation of BiP and CHOP, as well as enhanced accumulation of sphingolipids. CONCLUSION: Our data suggest that enhanced clonogenic cell killing after the combined treatments is dependent on oxidative- and ER-stress, apoptosis, and FB-sensitive sphingolipid production, and should help develop more effective mechanism-based therapeutic strategies.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Ceramidas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fenretinida/farmacologia , Fumonisinas/farmacologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Mesoporfirinas/farmacologia , Fotoquimioterapia/métodos , Compostos de Piridínio/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Caspase 3/metabolismo , Inibidores de Caspase/farmacologia , Linhagem Celular Tumoral , Terapia Combinada , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Radiossensibilizantes/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço
2.
J Photochem Photobiol B ; 159: 191-5, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27085050

RESUMO

We and others have shown that stresses, including photodynamic therapy (PDT), can disrupt the de novo sphingolipid biosynthesis pathway, leading to changes in the levels of sphingolipids, and subsequently, modulation of cell death. The de novo sphingolipid biosynthesis pathway includes a ceramide synthase-dependent reaction, giving rise to dihydroceramide, which is then converted in a desaturase-dependent reaction to ceramide. In this study we tested the hypothesis that combining Foscan-mediated PDT with desaturase inhibitor fenretinide (HPR) enhances cancer cell killing. We discovered that by subjecting SCC19 cells, a human head and neck squamous cell carcinoma cell line, to PDT+HPR resulted in enhanced accumulation of C16-dihydroceramide, not ceramide. Concomitantly, mitochondrial depolarization was enhanced by the combined treatment. Enhanced activation of caspase-3 after PDT+HPR was inhibited by FB. Enhanced clonogenic cell death after the combination was sensitive to FB, as well as Bcl2- and caspase inhibitors. Treatment of mouse SCCVII squamous cell carcinoma tumors with PDT+HPR resulted in improved long-term tumor cures. Overall, our data showed that combining PDT with HPR enhanced apoptotic cancer cell killing and antitumor efficacy of PDT. The data suggest the involvement of the de novo sphingolipid biosynthesis pathway in enhanced apoptotic cell killing after PDT+HPR, and identify the combination as a novel more effective anticancer treatment than either treatment alone.


Assuntos
Apoptose , Fenretinida/uso terapêutico , Mesoporfirinas/uso terapêutico , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Esfingolipídeos/biossíntese , Linhagem Celular Tumoral , Quimioterapia Combinada , Fenretinida/administração & dosagem , Humanos , Mesoporfirinas/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem
3.
Int J Oncol ; 46(5): 2003-10, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25739041

RESUMO

Because photodynamic therapy (PDT) alone is not always effective as an anticancer treatment, PDT is combined with other anticancer agents for improved efficacy. The clinically-relevant fenretinide [N-(4-hydroxyphenyl) retinamide; 4HPR], was combined with the silicon phthalocyanine photosensitizer Pc4-mediated PDT to test for their potential to enhance killing of SCC17B cells, a clinically-relevant model of human head and neck squamous cell carcinoma. Because each of these treatments induces apoptosis and regulates the de novo sphingolipid (SL) biosynthesis pathway, the role of ceramide synthase, the pathway-associated enzyme, in PDT+4HPR-induced apoptotic cell death was determined using the ceramide synthase inhibitor fumonisin B1 (FB). PDT+4HPR enhanced loss of clonogenicity. zVAD-fmk, a pan-caspase inhibitor, and FB, protected cells from death post-PDT+4HPR. In contrast, the anti-apoptotic protein Bcl2 inhibitor ABT199 enhanced cell killing after PDT+4HPR. Combining PDT with 4HPR led to FB-sensitive, enhanced Bax associated with mitochondria and cytochrome c redistribution. Mass spectrometry data showed that the accumulation of C16-dihydroceramide, a precursor of ceramide in the de novo SL biosynthesis pathway, was enhanced after PDT+4HPR. Using quantitative confocal microscopy, we found that PDT+4HPR enhanced dihydroceramide/ceramide accumulation in the ER, which was inhibited by FB. The results suggest that SCC17B cells are sensitized to PDT by 4HPR via the de novo SL biosynthesis pathway and apoptosis, and imply potential clinical relevance of the combination for cancer treatment.


Assuntos
Anticarcinógenos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Fenretinida/uso terapêutico , Neoplasias de Cabeça e Pescoço/patologia , Fotoquimioterapia/métodos , Esfingolipídeos/biossíntese , Ensaio Tumoral de Célula-Tronco/métodos , Carcinoma de Células Escamosas/tratamento farmacológico , Terapia Combinada , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Microscopia Confocal , Espectrometria de Massas por Ionização por Electrospray , Células Tumorais Cultivadas
4.
J Photochem Photobiol B ; 143: 163-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25635908

RESUMO

Combining photodynamic therapy (PDT) with another anticancer treatment modality is an important strategy for improved efficacy. PDT with Pc4, a silicon phthalocyanine photosensitizer, was combined with C6-pyridinium ceramide (LCL29) to determine their potential to promote death of SCC17B human head and neck squamous cell carcinoma cells. PDT+LCL29-induced enhanced cell death was inhibited by zVAD-fmk, a pan-caspase inhibitor, and fumonisin B1 (FB), a ceramide synthase inhibitor. Quantitative confocal microscopy showed that combining PDT with LCL29 enhanced FB-sensitive ceramide accumulation in the mitochondria. Furthermore, PDT+LCL29 induced enhanced FB-sensitive redistribution of cytochrome c and caspase-3 activation. Overall, the data indicate that PDT+LCL29 enhanced cell death via FB-sensitive, mitochondrial ceramide accumulation and apoptosis.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Ceramidas/farmacologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Indóis/farmacologia , Compostos de Organossilício/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Compostos de Piridínio/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Caspase 3/metabolismo , Linhagem Celular Tumoral , Citocromos c/metabolismo , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Fumonisinas/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/efeitos da radiação
5.
Photochem Photobiol Sci ; 13(11): 1621-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25266739

RESUMO

The sphingolipid ceramide modulates stress-induced cell death and apoptosis. We have shown that ceramide generated via de novo sphingolipid biosynthesis is required to initiate apoptosis after photodynamic therapy (PDT). The objective of this study was to define the role of ceramide synthase (CERS) in PDT-induced cell death and apoptosis using fumonisin B1 (FB), a CERS inhibitor. We used the silicon phthalocyanine Pc4 for PDT, and SCC17B cells, as a clinically-relevant model of human head and neck squamous carcinoma. zVAD-fmk, a pan-caspase inhibitor, as well as FB, protected cells from death after PDT. In contrast, ABT199, an inhibitor of the anti-apoptotic protein Bcl2, enhanced cell killing after PDT. PDT-induced accumulation of ceramide in the endoplasmic reticulum and mitochondria was inhibited by FB. PDT-induced Bax translocation to the mitochondria and cytochrome c release were also inhibited by FB. These novel data suggest that PDT-induced cell death via apoptosis is CERS/ceramide-dependent.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fumonisinas/farmacologia , Indóis/química , Compostos de Organossilício/química , Oxirredutases/antagonistas & inibidores , Clorometilcetonas de Aminoácidos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Ceramidas/análise , Ceramidas/metabolismo , Citocromos c/metabolismo , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Inibidores Enzimáticos/uso terapêutico , Fumonisinas/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Espectrometria de Massas , Mitocôndrias/química , Mitocôndrias/metabolismo , Oxirredutases/metabolismo , Fotoquimioterapia , Proteína X Associada a bcl-2/metabolismo
6.
PLoS One ; 9(4): e93056, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24691130

RESUMO

Oxalate toxicity is mediated through generation of reactive oxygen species (ROS) via a process that is partly dependent on mitochondrial dysfunction. Here, we investigated whether C-phycocyanin (CP) could protect against oxidative stress-mediated intracellular damage triggered by oxalate in MDCK cells. DCFDA, a fluorescence-based probe and hexanoyl-lysine adduct (HEL), an oxidative stress marker were used to investigate the effect of CP on oxalate-induced ROS production and membrane lipid peroxidation (LPO). The role of CP against oxalate-induced oxidative stress was studied by the evaluation of mitochondrial membrane potential by JC1 fluorescein staining, quantification of ATP synthesis and stress-induced MAP kinases (JNK/SAPK and ERK1/2). Our results revealed that oxalate-induced cells show markedly increased ROS levels and HEL protein expression that were significantly decreased following pre-treatment with CP. Further, JC1 staining showed that CP pre-treatment conferred significant protection from mitochondrial membrane permeability and increased ATP production in CP-treated cells than oxalate-alone-treated cells. In addition, CP treated cells significantly decreased the expression of phosphorylated JNK/SAPK and ERK1/2 as compared to oxalate-alone-treated cells. We concluded that CP could be used as a potential free radical-scavenging therapeutic strategy against oxidative stress-associated diseases including urolithiasis.


Assuntos
Citoproteção/efeitos dos fármacos , Mitocôndrias/patologia , Oxalatos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Ficocianina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Cães , Ativação Enzimática/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Células Madin Darby de Rim Canino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/metabolismo
7.
Exp Biol Med (Maywood) ; 239(5): 509-18, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24625439

RESUMO

Polymorphonuclear neutrophils (PMN) play a key role in host innate immune responses by migrating to the sites of inflammation. Furthermore, PMN recruitment also plays a significant role in the pathophysiology of a plethora of inflammatory disorders such as chronic obstructive pulmonary disease (COPD), gram negative sepsis, inflammatory bowel disease (IBD), lung injury, and arthritis. Of note, chemokine-dependent signalling is implicated in the amplification of immune responses by virtue of its role in PMN chemotaxis in most of the inflammatory diseases. It has been clinically established that impediment of PMN recruitment ameliorates disease severity and provides relief in majority of other immune-associated disorders. This review focuses on different novel approaches clinically proven to be effective in blocking chemokine signalling associated with PMN recruitment that includes CXCR2 antagonists, chemokine analogs, anti-CXCR2 monoclonal antibodies, and CXCR2 knock-out models. It also highlights the significance of the utility of nanoparticles in drugs used for blocking migration of PMN to the sites of inflammation.


Assuntos
Movimento Celular , Inflamação/terapia , Neutrófilos/imunologia , Receptores de Interleucina-8B/antagonistas & inibidores , Animais , Humanos , Inflamação/imunologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Transdução de Sinais
8.
Int J Oncol ; 43(6): 2064-72, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24126464

RESUMO

Photodynamic therapy (PDT) is not always effective as an anticancer treatment, therefore, PDT is combined with other anticancer agents for improved efficacy. The combination of dasatinib and PDT with the silicone phthalocyanine photosensitizer Pc 4 was assessed for increased killing of SCCVII mouse squamous cell carcinoma cells, a preclinical model of head and neck squamous cell carcinoma, using apoptotic markers and colony formation as experimental end-points. Because each of these treatments regulates the metabolism of the sphingolipid ceramide, their effects on mRNA levels of ceramide synthase, a ceramide-producing enzyme, and the sphingolipid profile were determined. PDT + dasatinib induced an additive loss of clonogenicity. Unlike PDT alone or PDT + dasatinib, dasatinib induced zVAD-fmk-dependent cell killing. PDT or dasatinib-induced caspase-3 activation was potentiated after the combination. PDT alone induced mitochondrial depolarization, and the effect was inhibited after the combination. Annexin V+ and propidium iodide+ cells remained at control levels after treatments. In contrast to PDT alone, dasatinib induced upregulation of ceramide synthase 1 mRNA, and the effect was enhanced after the combination. Dasatinib induced a modest increase in C20:1- and C22-ceramide but had no effect on total ceramide levels. PDT increased the levels of 12 individual ceramides and total ceramides, and the addition of dasatinib did not affect these increases. PDT alone decreased substantially sphingosine levels and inhibited the activity of acid ceramidase, an enzyme that converts ceramide to sphingosine. The data suggest that PDT-induced increases in ceramide levels do not correlate with ceramide synthase mRNA levels but rather with inhibition of ceramidase. Cell killing was zVAD-fmk-sensitive after dasatinib but not after either PDT or the combination and enhanced cell killing after the combination correlated with potentiated caspase-3 activation and upregulation of ceramide synthase 1 mRNA but not the production of ceramide. The data imply potential significance of the combination for cancer treatment.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Indóis/uso terapêutico , Oxirredutases/genética , Fotoquimioterapia/métodos , Pirimidinas/uso terapêutico , Tiazóis/uso terapêutico , Neoplasias Abdominais/tratamento farmacológico , Ceramidase Ácida/antagonistas & inibidores , Ceramidase Ácida/metabolismo , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Anexina A5/metabolismo , Apoptose , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Ceramidas/biossíntese , Ceramidas/metabolismo , Dasatinibe , Ativação Enzimática , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C3H , Mitocôndrias/metabolismo , Propídio , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , RNA Mensageiro/biossíntese , Esfingosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA