Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(16): e2319790121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593079

RESUMO

Bacteriophages (phages) play critical roles in modulating microbial ecology. Within the human microbiome, the factors influencing the long-term coexistence of phages and bacteria remain poorly investigated. Saccharibacteria (formerly TM7) are ubiquitous members of the human oral microbiome. These ultrasmall bacteria form episymbiotic relationships with their host bacteria and impact their physiology. Here, we showed that during surface-associated growth, a human oral Saccharibacteria isolate (named TM7x) protects its host bacterium, a Schaalia odontolytica strain (named XH001) against lytic phage LC001 predation. RNA-Sequencing analysis identified in XH001 a gene cluster with predicted functions involved in the biogenesis of cell wall polysaccharides (CWP), whose expression is significantly down-regulated when forming a symbiosis with TM7x. Through genetic work, we experimentally demonstrated the impact of the expression of this CWP gene cluster on bacterial-phage interaction by affecting phage binding. In vitro coevolution experiments further showed that the heterogeneous populations of TM7x-associated and TM7x-free XH001, which display differential susceptibility to LC001 predation, promote bacteria and phage coexistence. Our study highlights the tripartite interaction between the bacterium, episymbiont, and phage. More importantly, we present a mechanism, i.e., episymbiont-mediated modulation of gene expression in host bacteria, which impacts their susceptibility to phage predation and contributes to the formation of "source-sink" dynamics between phage and bacteria in biofilm, promoting their long-term coexistence within the human microbiome.


Assuntos
Bacteriófagos , Humanos , Bacteriófagos/fisiologia , Simbiose , Bactérias/genética
2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366018

RESUMO

Saccharibacteria (formerly TM7) are a group of widespread and genetically diverse ultrasmall bacteria with highly reduced genomes that belong to Candidate Phyla Radiation, a large monophyletic lineage with poorly understood biology. Nanosynbacter lyticus type strain TM7x is the first Saccharibacteria member isolated from the human oral microbiome. With restrained metabolic capacities, TM7x lives on the surface of, and forms an obligate episymbiotic relationship with its bacterial host, Schaalia odontolytica strain XH001. The symbiosis allows TM7x to propagate but presents a burden to host bacteria by inducing stress response. Here, we employed super-resolution fluorescence imaging to investigate the physical association between TM7x and XH001. We showed that the binding with TM7x led to a substantial alteration in the membrane fluidity of XH001. We also revealed the formation of intracellular lipid droplets in XH001 when forming episymbiosis with TM7x, a feature that has not been reported in oral bacteria. The TM7x-induced lipid droplets accumulation in XH001 was confirmed by label-free Raman spectroscopy, which also unveiled additional phenotypical features when XH001 cells are physically associated with TM7x. Further exploration through culturing XH001 under various stress conditions showed that lipid droplets accumulation was a general response to stress. A survival assay demonstrated that the presence of lipid droplets plays a protective role in XH001, enhancing its survival under adverse conditions. In conclusion, our study sheds new light on the intricate interaction between Saccharibacteria and their host bacteria, highlighting the potential benefit conferred by TM7x to its host and further emphasizing the context-dependent nature of symbiotic relationships.


Assuntos
Gotículas Lipídicas , Microbiota , Humanos , Bactérias , Simbiose
3.
J Oral Microbiol ; 16(1): 2287349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38188073

RESUMO

Background: Oral Saccharibacteria Nanosynbacter lyticus strain TM7× lives as an ultrasmall epibiont on the surface of its host, Schaalia odontolytica strain XH001. Establishing this interaction is a poorly understood multi-step process. The recovery phase marks a shift in the TM7×/host interaction, switching from the early killing phase, with extensive host cell death, to a stable symbiosis phase where the host and epibiont can grow together. Results: Transcriptomes of TM7× and host, XH001, were captured during the recovery phase and compared to uninfected host and the early host/epibiont interaction (initial encounter). XH001 showed increased expression for rhamnose cell wall components and for the precursor to peptidoglycan while TM7× showed increases in the peptidoglycan pathway. Transporter expression was generally increased for both organisms during recovery compared to the initial encounter, though, XH001 showed lower amino acid transporter expression. Consistent with host parasitism, XH001 showed increased expression of various stress-related genes during recovery while TM7× showed reduced stress. TM7× displayed higher expression of type IV pili, consistent with increased attachment to new hosts. Conclusion: As TM7× is a member of the broadly distributed Candidate Phyla Radiation with small genomes lacking numerous biosynthetic pathways, this study provides further insights into how these epibionts interact and modulate their host bacteria.

4.
mBio ; : e0176623, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009957

RESUMO

IMPORTANCE: Here, we profiled putative phages of Saccharibacteria, which are of particular importance as Saccharibacteria influence some human oral diseases. We additionally profiled putative phages of Gracilibacteria and Absconditabacteria, two Candidate Phyla Radiation (CPR) lineages of interest given their use of an alternative genetic code. Among the phages identified in this study, some are targeted by spacers from both CPR and non-CPR bacteria and others by both bacteria that use the standard genetic code as well as bacteria that use an alternative genetic code. These findings represent new insights into possible phage replication strategies and have relevance for phage therapies that seek to manipulate microbiomes containing CPR bacteria.

5.
bioRxiv ; 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37732248

RESUMO

Saccharibacteria (formerly TM7) Nanosynbacter lyticus type strain TM7x exhibits a remarkably compact genome and an extraordinarily small cell size. This obligate epibiotic parasite forms a symbiotic relationship with its bacterial host, Schaalia odontolytica, strain XH001 (formerly Actinomyces odontolyticus strain XH001). Due to its limited genome size, TM7x possesses restrained metabolic capacities, predominantly living on the surface of its bacterial host to sustain this symbiotic lifestyle. To comprehend this intriguing, yet understudied interspecies interaction, a thorough understanding of the physical interaction between TM7x and XH001 is imperative. In this study, we employed super-resolution fluorescence imaging to investigate the physical association between TM7x and XH001. We found that the binding with TM7x led to a substantial alteration in the membrane fluidity of the host bacterium XH001. Unexpectedly, we revealed the formation of intracellular lipid droplets in XH001 when forming episymbiosis with TM7x, a feature not commonly observed in oral bacteria cells. The TM7x-induced LD accumulation in XH001 was further confirmed by label-free non-invasive Raman spectroscopy, which also unveiled additional phenotypical features when XH001 cells are physically associated with TM7x. Further exploration through culturing host bacterium XH001 alone under various stress conditions showed that LD accumulation was a general response to stress. Intriguingly, a survival assay demonstrated that the presence of LDs likely plays a protective role in XH001, enhancing its overall survival under adverse conditions. In conclusion, our study sheds new light on the intricate interaction between Saccharibacteria and its host bacterium, highlighting the potential benefit conferred by TM7x to its host, and further emphasizing the context-dependent nature of symbiotic relationships.

6.
J Oral Microbiol ; 15(1): 2207336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187674

RESUMO

Decades of ongoing research has established that oral microbial communities play a role in oral diseases such as periodontitis and caries. Yet the detection of oral bacteria and the profiling of oral polymicrobial communities currently rely on methods that are costly, slow, and technically complex, such as qPCR or next-generation sequencing. For the widescale screening of oral microorganisms suitable for point-of-care settings, there exists the need for a low-cost, rapid detection technique. Here, we tailored the novel CRISPR-Cas-based assay SHERLOCK for the species-specific detection of oral bacteria. We developed a computational pipeline capable of generating constructs suitable for SHERLOCK and experimentally validated the detection of seven oral bacteria. We achieved detection within the single-molecule range that remained specific in the presence of off-target DNA found within saliva. Further, we adapted the assay for detecting target sequences directly from unprocessed saliva samples. The results of our detection, when tested on 30 healthy human saliva samples, fully aligned with 16S rRNA sequencing. Looking forward, this method of detecting oral bacteria is highly scalable and can be easily optimized for implementation at point-of-care settings.

7.
J Oral Microbiol ; 15(1): 2149448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36452179

RESUMO

Background: Endodontic infections are known to be caused by pathogenic bacteria. Numerous previous studies found that both Fusobacterium nucleatum and Enterococcus faecalis are associated with endodontic infections, with Fusobacterium nucleatum more abundant in primary infection while Enterococcus faecalis more abundant in secondary infection. Little is known about the potential interactions between different endodontic pathogens. Objective: This study aims to investigate the potential interaction between F. nucleatum and E. faecalis via phenotypical and genetic approaches. Methods: Physical and physiological interactions of F. nucleatum and E. faecalis under both planktonic and biofilm conditions were measured with co-aggregation and competition assays. The mechanisms behind these interactions were revealed with genetic screening and biochemical measurements. Results: E. faecalis was found to physically bind to F. nucleatum under both in vitro planktonic and biofilm conditions, and this interaction requires F. nucleatum fap2, a galactose-inhibitable adhesin-encoding gene. Under our experimental conditions, E. faecalis exhibits a strong killing ability against F. nucleatum by generating an acidic micro-environment and producing hydrogen peroxide (H2O2). Finally, the binding and killing capacities of E. faecalis were found to be necessary to invade and dominate a pre-established in vitro F. nucleatum biofilm. Conclusions: This study reveals multifaceted mechanisms underlying the physical binding and antagonistic interaction between F. nucleatum and E. faecalis, which could play a potential role in the shift of microbial composition in primary and secondary endodontic infections.

8.
bioRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38187725

RESUMO

The human oral and nasal cavities can act as reservoirs for opportunistic pathogens capable of causing acute infection. These microbes asymptomatically colonize the human oral and nasal cavities which facilitates transmission within human populations via the environment, and they routinely possess a clinically-significant antibiotic-resistance genes. Among these opportunistic pathogens, the Klebsiella genus stands out as a notable example, with its members frequently linked to nosocomial infections and multidrug resistance. As with many colonizing opportunistic pathogens, how Klebsiella transitions from an asymptomatic colonizer to a pathogen remains unclear. Here, we explored a possible explanation by investigating the ability of oral and nasal Klebsiella to outcompete their native microbial community members under in vitro starvation conditions, which could be analogous to external hospital environments. When Klebsiella was present within a healthy human oral or nasal sample, the bacterial community composition shifted dramatically under starvation conditions and typically became dominated by Klebsiella. Furthermore, introducing K. pneumoniae exogenously into a native microbial community lacking K. pneumoniae, even at low inoculum, led to repeated dominance under starvation. K.pneumoniae strains isolated from healthy individuals' oral and nasal cavities also exhibited resistance to multiple classes of antibiotics and were genetically similar to clinical and gut isolates. In addition, we found that in the absence of Klebsiella, other understudied opportunistic pathogens, such as Peptostreptococcus, dominate under starvation conditions. Our findings establish an environmental circumstance that allows for the outgrowth of Klebsiella and other opportunistic pathogens. The ability to outcompete other commensal bacteria and to persist under harsh environmental conditions may contribute to the colonization-to-infection transition of these opportunistic pathogens.

9.
J Bacteriol ; 204(9): e0011222, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35975994

RESUMO

Saccharibacteria Nanosynbacter lyticus strain TM7x is a member of the broadly distributed candidate phylum radiation. These bacteria have ultrasmall cell sizes, have reduced genomes, and live as epibionts on the surfaces of other bacteria. The mechanisms by which they establish and maintain this relationship are not yet fully understood. The transcriptomes of the epibiont TM7x and its host bacteria Schaalia odontolytica strain XH001 were captured across the establishment of symbiosis during both the initial interaction and stable symbiosis. The results showed a dynamic interaction with large shifts in gene expression for both species between the initial encounter and stable symbiosis, notably in transporter genes. During stable symbiosis, the host XH001 showed higher gene expression for peptidoglycan biosynthesis, mannosylation, cell cycle and stress-related genes, whereas it showed lower expression of chromosomal partitioning genes. This was consistent with the elongated cell shape seen in XH001 infected with TM7x and our discovery that infection resulted in thickened cell walls. Within TM7x, increased pili, type IV effector genes, and arginine catabolism/biosynthesis gene expression during stable symbiosis implied a key role for these functions in the interaction. Consistent with its survival and persistence in the human microbiome as an obligate epibiont with reduced de novo biosynthetic capacities, TM7x also showed higher levels of energy production and peptidoglycan biosynthesis, but lower expression of stress-related genes, during stable symbiosis. These results imply that TM7x and its host bacteria keep a delicate balance in order to sustain an episymbiotic lifestyle. IMPORTANCE Nanosynbacter lyticus type strain TM7x is the first cultivated member of the Saccharibacteria and the candidate phyla radiation (CPR). It was discovered to be ultrasmall in cell size with a highly reduced genome that establishes an obligate epibiotic relationship with its host bacterium. The CPR is a large, monophyletic radiation of bacteria with reduced genomes that includes Saccharibacteria. The vast majority of the CPR have yet to be cultivated, and our insights into these unique organisms to date have been derived from only a few Saccharibacteria species. Being obligate parasites, it is unknown how these ultrasmall Saccharibacteria, which are missing many de novo biosynthetic pathways, are maintained at a high prevalence within the human microbiome as well as in the environment.


Assuntos
Simbiose , Transcriptoma , Arginina/metabolismo , Bactérias/genética , Genoma Bacteriano , Humanos , Peptidoglicano/metabolismo
10.
J Virol ; 96(17): e0106322, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000841

RESUMO

Bacteriophages (phages) are an integral part of the human oral microbiome. Their roles in modulating bacterial physiology and shaping microbial communities have been discussed but remain understudied due to limited isolation and characterization of oral phage. Here, we report the isolation of LC001, a lytic phage targeting human oral Schaalia odontolytica (formerly known as Actinomyces odontolyticus) strain XH001. We showed that LC001 attached to and infected surface-grown, but not planktonic, XH001 cells, and it displayed remarkable host specificity at the strain level. Whole-genome sequencing of spontaneous LC001-resistant, surface-grown XH001 mutants revealed that the majority of the mutants carry nonsense or frameshift mutations in XH001 gene APY09_05145 (renamed ltg-1), which encodes a putative lytic transglycosylase (LT). The mutants are defective in LC001 binding, as revealed by direct visualization of the significantly reduced attachment of phage particles to the XH001 spontaneous mutants compared that to the wild type. Meanwhile, targeted deletion of ltg-1 produced a mutant that is defective in LC001 binding and resistant to LC001 infection even as surface-grown cells, while complementation of ltg-1 in the mutant background restored the LC001-sensitive phenotype. Intriguingly, similar expression levels of ltg-1 were observed in surface-grown and planktonic XH001, which displayed LC001-binding and nonbinding phenotypes, respectively. Furthermore, the overexpression of ltg-1 failed to confer an LC001-binding and -sensitive phenotype to planktonic XH001. Thus, our data suggested that rather than directly serving as a phage receptor, ltg-1-encoded LT may increase the accessibility of phage receptor, possibly via its enzymatic activity, by cleaving the peptidoglycan structure for better receptor exposure during peptidoglycan remodeling, a function that can be exploited by LC001 to facilitate infection. IMPORTANCE The evidence for the presence of a diverse and abundant phage population in the host-associated oral microbiome came largely from metagenomic analysis or the observation of virus-like particles within saliva/plaque samples, while the isolation of oral phage and investigation of their interaction with bacterial hosts are limited. Here, we report the isolation of LC001, the first lytic phage targeting oral Schaalia odontolytica. Our study suggested that LC001 may exploit the host bacterium-encoded lytic transglycosylase function to gain access to the receptor, thus facilitating its infection.


Assuntos
Actinomycetaceae , Bacteriófagos , Glicosiltransferases , Actinomycetaceae/enzimologia , Actinomycetaceae/virologia , Receptores de Bacteriófagos/metabolismo , Bacteriófagos/enzimologia , Bacteriófagos/genética , Bacteriófagos/fisiologia , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Especificidade de Hospedeiro , Humanos , Microbiota , Boca/microbiologia , Boca/virologia , Mutação , Peptidoglicano/metabolismo , Plâncton/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
Microbiol Resour Announc ; 11(8): e0040322, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35894623

RESUMO

Here, we report draft genome sequences for nine strains of "Candidatus Nanosynbacter sp. HMT-352." These strains and their sequences were used to interrogate strain-level variations in host range, gene content, and growth dynamics among the phylum "Candidatus Saccharibacteria."

12.
mSystems ; 7(2): e0148821, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35343799

RESUMO

Saccharibacteria (TM7), which are obligate episymbionts growing on the surface of host bacteria, may play an important role in oral disease, such as periodontitis (1, 2). As TM7 is a newly cultured lineage of bacteria, its research is limited by the small number of isolated representatives relative to the number of TM7 genomes assembled from culture-independent studies (3-5). A comprehensive view of both TM7 taxa and TM7 strain-level variations remains opaque. In this study, we expanded our previously developed TM7 baiting method into using many host bacteria in parallel, which allowed us to obtain 37 TM7 strains from the human oral cavity. These strains were further classified into low-enrichment (LE, n = 24) and high-enrichment (HE, n = 13) groups based on their proficiency at propagating on host bacteria. Of the 13 HE strains, 10 belong to "Candidatus Nanosynbacter sp." strain HMT-352 (human microbial taxon) (6), enabling us to explore both the phenotypic and genomic strain variations within a single TM7 species. We show that TM7 HMT-352 strains exhibit a diverse host range and varied growth dynamics during the establishment of their episymbiotic relationship with host bacteria. Furthermore, despite HMT-352 strains sharing a majority of their genes, we identified several gene clusters that may play a pivotal role in host affinity. More importantly, our comparative analyses also provide TM7 gene candidates associated with strain-level phenotypic variation that may be important for episymbiotic interactions with host bacteria. IMPORTANCE Candidate phylum radiation (CPR) bacteria comprise a poorly understood phylum that is estimated to encompass ∼26% of all diversity of domain bacteria. Among CPR bacteria, the Saccharibacteria lineage (TM7) is of particular interest, as it is found in high abundance in the mammal microbiome and has been associated with oral disease. While many CPR genomes, TM7 included, have been acquired through culture-independent methods, only a small number of representatives have been isolated. Such isolated representatives, however, shed light on the physiology, pathogenesis, and episymbiotic interactions of TM7. Combined with genomic analyses, experiments involving isolated representatives can distinguish phylogenetic to phenotypic discrepancies and better identify genes of importance. In this study, we utilized multiple host bacteria in parallel to isolate TM7 bacteria and examined strain-level variation in TM7 to reveal key genes that may drive TM7-host interactions. Our findings accentuate that broad phylogenetic characterization of CPR is the next step in understanding these bacteria.


Assuntos
Microbiota , Periodontite , Animais , Humanos , Filogenia , Bactérias , Mamíferos
13.
STAR Protoc ; 3(1): 101167, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35199032

RESUMO

This protocol outlines the process of preparing Saccharibacteria (TM7) and applying ligature with and without TM7 onto a mouse molar, and measuring the subsequent bone resorption and inflammation. This ligature model is particularly useful in studying the pathogenicity of specific bacteria that do not typically colonize the mouse oral cavity. This is especially true in the case of TM7 bacteria that prefer to grow on the surface of other bacteria. For complete details on the use and execution of this protocol, please refer to Chipashvili et al. (2021).


Assuntos
Periodontite , Animais , Bactérias , Modelos Animais de Doenças , Inflamação , Ligadura , Camundongos , Periodontite/microbiologia
14.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34992141

RESUMO

Saccharibacteria are a group of widespread and genetically diverse ultrasmall bacteria with highly reduced genomes that belong to the Candidate Phyla Radiation. Comparative genomic analyses suggest convergent evolution of key functions enabling the adaptation of environmental Saccharibacteria to mammalian microbiomes. Currently, our understanding of this environment-to-mammal niche transition within Saccharibacteria and their obligate episymbiotic association with host bacteria is limited. Here, we identified a complete arginine deiminase system (ADS), found in further genome streamlined mammal-associated Saccharibacteria but missing in their environmental counterparts, suggesting acquisition during environment-to-mammal niche transition. Using TM7x, the first cultured Saccharibacteria strain from the human oral microbiome and its host bacterium Actinomyces odontolyticus, we experimentally tested the function and impact of the ADS. We demonstrated that by catabolizing arginine and generating adenosine triphosphate, the ADS allows metabolically restrained TM7x to maintain higher viability and infectivity when disassociated from the host bacterium. Furthermore, the ADS protects TM7x and its host bacterium from acid stress, a condition frequently encountered within the human oral cavity due to bacterial metabolism of dietary carbohydrates. Intriguingly, with a restricted host range, TM7x forms obligate associations with Actinomyces spp. lacking the ADS but not those carrying the ADS, suggesting the acquired ADS may also contribute to partner selection for cooperative episymbiosis within a mammalian microbiome. These data present experimental characterization of a mutualistic interaction between TM7x and their host bacteria, and illustrate the benefits of acquiring a novel pathway in the transition of Saccharibacteria to mammalian microbiomes.


Assuntos
Bactérias/enzimologia , Hidrolases/metabolismo , Actinomyces , Adaptação Fisiológica , Animais , Arginina/metabolismo , Bactérias/classificação , Bactérias/genética , Genoma Bacteriano , Especificidade de Hospedeiro , Humanos , Hidrolases/genética , Mamíferos/genética , Microbiota , Boca/microbiologia , Filogenia , Simbiose
15.
Cell Host Microbe ; 29(11): 1649-1662.e7, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34637779

RESUMO

Saccharibacteria (TM7) are obligate epibionts living on the surface of their host bacteria and are strongly correlated with dysbiotic microbiomes during periodontitis and other inflammatory diseases, suggesting they are putative pathogens. However, due to the recalcitrance of TM7 cultivation, causal research to investigate their role in inflammatory diseases is lacking. Here, we isolated multiple TM7 species on their host bacteria from periodontitis patients. These TM7 species reduce inflammation and consequential bone loss by modulating host bacterial pathogenicity in a mouse ligature-induced periodontitis model. Two host bacterial functions involved in collagen binding and utilization of eukaryotic sialic acid are required for inducing bone loss and are altered by TM7 association. This TM7-mediated downregulation of host bacterial pathogenicity is shown for multiple TM7/host bacteria pairs, suggesting that, in contrast to their suspected pathogenic role, TM7 could protect mammalian hosts from inflammatory damage induced by their host bacteria.


Assuntos
Actinobacteria/patogenicidade , Perda do Osso Alveolar/microbiologia , Fenômenos Fisiológicos Bacterianos , Gengivite/microbiologia , Periodontite/microbiologia , Simbiose , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/fisiologia , Actinomyces/genética , Actinomyces/isolamento & purificação , Actinomyces/patogenicidade , Actinomyces/fisiologia , Perda do Osso Alveolar/prevenção & controle , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Infecções Bacterianas/microbiologia , Infecções Bacterianas/prevenção & controle , Colágeno/metabolismo , Placa Dentária/microbiologia , Regulação para Baixo , Genes Bacterianos , Gengivite/prevenção & controle , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microbiota , Ácido N-Acetilneuramínico/metabolismo , Periodontite/prevenção & controle , Propionibacteriaceae/genética , Propionibacteriaceae/isolamento & purificação , Propionibacteriaceae/patogenicidade , Propionibacteriaceae/fisiologia , Virulência
16.
Mol Oral Microbiol ; 36(1): 37-49, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33174294

RESUMO

Developing a laboratory model of oral polymicrobial communities is essential for in vitro studies of the transition from healthy to diseased oral plaque. SHI medium is an enriched growth medium capable of supporting in vitro biofilms with similar diversity to healthy supragingival inocula; however, this medium does not maintain the diversity of gram-negative bacteria more associated with subgingival plaque. Here, we systematically modified SHI medium components to investigate the impacts of varying nutrients and develop a medium capable of supporting a specific disease-state subgingival community. A diseased subgingival plaque sample was inoculated in SHI medium with increasing concentrations of sucrose (0%, 0.1%, 0.5%), fetal bovine serum (FBS) (0%, 10%, 20%, 30%, 50%), and mucin (0.1, 2.5, 8.0 g/L) and grown for 48 hrs, then the 16S rRNA profiles of the resulting biofilms were examined. In total, these conditions were able to capture 89 of the 119 species and 43 of the 51 genera found in the subgingival inoculum. Interestingly, biofilms grown in high sucrose media, although dominated by acidogenic Firmicutes with a low final pH, contained several uncultured taxa from the genus Treponema, information that may aid culturing these periodontitis-associated fastidious organisms. Biofilms grown in a modified medium (here named subSHI-v1 medium) with 0.1% sucrose and 10% FBS had a high diversity closest to the inoculum and maintained greater proportions of many gram-negative species of interest from the subgingival periodontal pocket (including members of the genera Prevotella and Treponema, and the Candidate Phyla Radiation phylum Saccharibacteria), and therefore best represented the disease community.


Assuntos
Placa Dentária , Periodontite , Biofilmes , Humanos , Bolsa Periodontal , RNA Ribossômico 16S/genética
17.
Microbiol Resour Announc ; 9(34)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32816985

RESUMO

Strain BB001 is cultivated from the human oral cavity on its basibiont bacterial host Actinomyces sp. It is an ultrasmall bacterium with a reduced genome that grows obligately on its bacterial host. BB001 is the first member of human microbiome taxon 957.

18.
ISME J ; 14(12): 3054-3067, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32839546

RESUMO

Host range is a fundamental component of symbiotic interactions, yet it remains poorly characterized for the prevalent yet enigmatic subcategory of bacteria/bacteria symbioses. The recently characterized obligate bacterial epibiont Candidatus Nanosynbacter lyticus TM7x with its bacterial host Actinomyces odontolyticus XH001 offers an ideal system to study such a novel relationship. In this study, the host range of TM7x was investigated by coculturing TM7x with various related Actinomyces strains and characterizing their growth dynamics from initial infection through subsequent co-passages. Of the twenty-seven tested Actinomyces, thirteen strains, including XH001, could host TM7x, and further classified into "permissive" and "nonpermissive" based on their varying initial responses to TM7x. Ten permissive strains exhibited growth/crash/recovery phases following TM7x infection, with crash timing and extent dependent on initial TM7x dosage. Meanwhile, three nonpermissive strains hosted TM7x without a growth-crash phase despite high TM7x dosage. The physical association of TM7x with all hosts, including nonpermissive strains, was confirmed by microscopy. Comparative genomic analyses revealed distinguishing genomic features between permissive and nonpermissive hosts. Our results expand the concept of host range beyond a binary to a wider spectrum, and the varying susceptibility of Actinomyces strains to TM7x underscores how small genetic differences between hosts can underly divergent selective trajectories.


Assuntos
Especificidade de Hospedeiro , Simbiose , Actinomyces/genética , Bactérias
19.
Cell Rep ; 32(3): 107939, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32698001

RESUMO

The first cultivated representative of the enigmatic phylum Saccharibacteria (formerly TM7) was isolated from humans and revealed an ultra-small cell size (200-300 nm), a reduced genome with limited biosynthetic capabilities, and a unique parasitic lifestyle. TM7x was the only cultivated member of the candidate phyla radiation (CPR), estimated to encompass 26% of the domain Bacteria. Here we report on divergent genomes from major lineages across the Saccharibacteria phylum in humans and mammals, as well as from ancient dental calculus. These lineages are present at high prevalence within hosts. Direct imaging reveals that all groups are ultra-small in size, likely feeding off commensal bacteria. Analyses suggest that multiple acquisition events in the past led to the current wide diversity, with convergent evolution of key functions allowing Saccharibacteria from the environment to adapt to mammals. Ultra-small, parasitic CPR bacteria represent a relatively unexplored paradigm of prokaryotic interactions within mammalian microbiomes.


Assuntos
Adaptação Fisiológica/genética , Tamanho do Genoma , Genoma Bacteriano , Interações Hospedeiro-Patógeno/genética , Mamíferos/microbiologia , Acetobacteraceae/genética , Animais , Sistemas de Secreção Bacterianos/genética , Biodiversidade , Microbiologia Ambiental , Humanos , Boca/microbiologia , Filogenia , Filogeografia , Análise de Componente Principal
20.
Proc Natl Acad Sci U S A ; 115(48): 12277-12282, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30442671

RESUMO

Around one-quarter of bacterial diversity comprises a single radiation with reduced genomes, known collectively as the Candidate Phyla Radiation. Recently, we coisolated TM7x, an ultrasmall strain of the Candidate Phyla Radiation phylum Saccharibacteria, with its bacterial host Actinomyces odontolyticus strain XH001 from human oral cavity and stably maintained as a coculture. Our current work demonstrates that within the coculture, TM7x cells establish a long-term parasitic association with host cells by infecting only a subset of the population, which stay viable yet exhibit severely inhibited cell division. In contrast, exposure of a naïve A. odontolyticus isolate, XH001n, to TM7x cells leads to high numbers of TM7x cells binding to each host cell, massive host cell death, and a host population crash. However, further passaging reveals that XH001n becomes less susceptible to TM7x over time and enters a long-term stable relationship similar to that of XH001. We show that this reduced susceptibility is driven by rapid host evolution that, in contrast to many forms of phage resistance, offers only partial protection. The result is a stalemate where infected hosts cannot shed their parasites; nevertheless, parasite load is sufficiently low that the host population persists. Finally, we show that TM7x can infect and form stable long-term relationships with other species in a single clade of Actinomyces, displaying a narrow host range. This system serves as a model to understand how parasitic bacteria with reduced genomes such as those of the Candidate Phyla Radiation have persisted with their hosts and ultimately expanded in their diversity.


Assuntos
Actinomyces/fisiologia , Fenômenos Fisiológicos Bacterianos , Evolução Biológica , Actinomyces/crescimento & desenvolvimento , Actinomyces/isolamento & purificação , Bactérias/patogenicidade , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Humanos , Boca/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...