Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Integr Care ; 24(1): 14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434711

RESUMO

Introduction: The healthcare delivery system of Assam faces several challenges to provide affordable, accessible and quality care services. GNRC (Guwahati Neurological Research Center) is the first super-speciality hospital to address many of these gaps by delivering integrated affordable healthcare services to the populations of Assam and other parts of North-eastern India. Description & Discussion: This paper describes the implementation of a care delivery model which provides integrated care delivery services through linking hospitals to primary healthcare services, including preventive, promotive, and curative care, along with delivering easily accessible and affordable care to the people of Assam and other parts of North-eastern India. Conclusion: The proposed model is the first innovative approach from North-eastern India, Assam, to deliver affordable, accessible and patient-centric hospital led community-based preventive, promotive, and primary, secondary, and tertiary hospital-based care. It is anticipated that GNRC's "Affordable Health Mission" will help redesign and integrate the way primary, secondary and tertiary healthcare is delivered to the population of Assam in helping patients manage their own health and reduce the numbers that needs to be admitted to secondary care and tertiary care by improving patients' independence and well-being as well as dramatically reducing the cost to the overall health system.

3.
Ecol Evol ; 13(8): e10340, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37554398

RESUMO

Large mammals are susceptible to land use and climate change, unless they are safeguarded within large, protected areas. It is crucial to comprehend the effects of these changes on mammals to develop a conservation plan. We identified ecological hotspots that can sustain an ecosystem for the endangered Bengal tiger (Panthera tigris tigris), an umbrella species. We developed three distinct ensemble species distribution models (SDMs) for the Bengal tiger in the Indian East Himalayan Region (IEHR). The first model served as the baseline and considered habitat type, climate, land cover, and anthropogenic threats. The second model focused on climate, land use, and anthropogenic threats, the third model focused on climate variables. We projected the second and third models onto two future climate scenarios: RCP 4.5 and RCP 8.5. We evaluated the threats possess to protected areas within eco-sensitive zone based on the potential tiger habitat. Finally, we compared the potential habitat with the IUCN tiger range. Our study revealed that the Brahmaputra valley will serve as the primary habitat for tigers in the future. However, considering the projected severe climate scenarios, it is anticipated that tigers will undergo a range shift towards the north and east, especially in high-altitude regions. Very high conservation priority areas, which make up 3.4% of the total area, are predominantly located in the riverine corridor of Assam. High conservation priority areas, which make up 5.5% of total area are located in Assam and Arunachal Pradesh. It is important to note that conservation priority areas outside of protected areas pose a greater threat to tigers. We recommend reassessing the IUCN Red List's assigned range map for tigers in the IEHR, as it is over-predicted. Our study has led us to conclude both land use and climate change possess threats to the future habitat of tigers. The outcomes of our study will provide crucial information on identifying habitat hotspots and facilitate appropriate conservation planning efforts.

4.
Front Plant Sci ; 13: 997818, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212384

RESUMO

Betula luminifera is a subtropical fast-growing timber species with high economic value. However, along with global warming, heat stress become one of the main environmental variables that limit the productivity of B. luminifera, and the response of diverse geographic populations to high temperatures is still unclear. In order to offer a comprehensive understanding of the behavior of B. luminifera under heat stress, the physiological responses of six B. luminifera populations (across the core distribution area) were described in this work in an integrated viewpoint. The results showed that a multi-level physiological regulatory network may exist in B. luminifera, the first response was the activity of resistant enzymes [e.g., peroxidase (POD)] at a preliminary stage of 2 h heat stress, and then the proline (osmoregulation substance) content began to increase after 24 h of continuous high-temperature treatment. In addition, photosynthesis was stronlgly affected by heat stress, and the net photosynthetic rate (Pn ) showed a downward trend under heat treatment in all six B. luminifera populations. Interestingly, although the physiological change patterns of the six B. luminifera populations were relatively consistent for the same parameter, there were obvious differences among different populations. Comprehensive analysis revealed that the physiological response of Rongshui (RS) was the most stable, and this was the representative B. luminifera population. Illumina RNA-seq analysis was applied to reveal the specific biological process of B. luminifera under heat stress using the RS population, and a total of 116,484 unigenes were obtained. The differentially expressed genes (DEGs) between different time periods under heat stress were enriched in 34 KEGG pathways, and the limonene and pinene degradation pathway was commonly enriched in all pairwise comparisons. Moreover, transcription factors including bHLH (basic helix-loop-helix), MYB, WRKY, and NAC (NAM, ATAF1/2, and CUC2) were identified. In this study, the physiological response and tolerance mechanisms of B. luminifera under high temperature stress were revealed, which can conducive to the basis of B. luminifera selection and resistance assessment for cultivation and breeding.

5.
Front Plant Sci ; 13: 950936, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311104

RESUMO

Ovate family proteins (OFP) are plant-specific transcription factors involved in regulating morphologies of the lateral organs, plant growth and development. However, the functional roles of OFP genes in Betula luminifera, an important timber tree species, are not well studied. In this study, we identified 20 BlOFP genes and analyzed their phylogenetic relationship, gene structure, conserved motifs, and cis-elements. Further, expression analysis indicates that BlOFP genes were up-regulated in leaves on the one-year-old branch compared to leaves on the current-year branch and bract, except BlOFP7, BlOFP11, BlOFP14 and BlOFP12. The overexpression of BlOFP3 and BlOFP5 in Arabidopsis thaliana not only resulted in a slower growth rate but also produced sawtooth shape, flatter and darker green rosette leaves. Further investigation showed that the leaf thickness of the transgenic plants was more than double that of the wild type, which was caused by the increasement in the number and size of palisade tissue cells. Furthermore, the expression analysis also indicated that the expressions of several genes related to leaf development were significantly changed in the transgene plants. These results suggested the significant roles of BlOFP3 and BlOFP5 in leaf development. Moreover, protein-protein interaction studies showed that BlOFP3 interacts with BlKNAT5, and BlOFP5 interacts with BlKNAT5, BlBLH6 and BlBLH7. In conclusion, our study demonstrates that BlOFP3 and BlOFP5 were involved in leaf shape and thickness regulation by forming a complex with BlKNAT5, BlBLH6 and BlBLH7. In addition, our study serves as a guide for future functional genomic studies of OFP genes of the B. luminifera.

6.
Front Plant Sci ; 13: 883720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712576

RESUMO

Cunninghamia lanceolata is an essential timber species that provide 20%-30% raw materials for China's timber industry. Although a few transcriptomes have been published in C. lanceolata, full-length mRNA transcripts and regulatory mechanisms behind the cellulose and lignin biosynthesis have not been thoroughly investigated. Here, PacBio Iso-seq and RNA-seq analyses were adapted to identify the full-length and differentially expressed transcripts along a developmental gradient from apex to base of C. lanceolata shoots. A total of 48,846 high-quality full-length transcripts were obtained, of which 88.0% are completed transcriptome based on benchmarking universal single-copy orthologs (BUSCO) assessment. Along stem developmental gradient, 18,714 differentially expressed genes (DEGs) were detected. Further, 28 and 125 DEGs were identified as enzyme-coding genes of cellulose and lignin biosynthesis, respectively. Moreover, 57 transcription factors (TFs), including MYB and NAC, were identified to be involved in the regulatory network of cellulose and lignin biosynthesis through weighted gene co-expression network analysis (WGCNA). These TFs are composed of a comparable regulatory network of secondary cell wall formation in angiosperms, revealing a similar mechanism may exist in gymnosperms. Further, through qRT-PCR, we also investigated eight specific TFs involved in compression wood formation. Our findings provide a comprehensive and valuable source for molecular genetics breeding of C. lanceolata and will be beneficial for molecular-assisted selection.

7.
Sci Total Environ ; 809: 151100, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34695466

RESUMO

Although microplastic (MP) pollution has become an environmental issue worldwide, most related research has been confined to marine ecosystems. The impacts of MPs on terrestrial ecosystems, and especially on terrestrial plants, are poorly studied. In our study, different particle sizes (2 µm and 80 nm) and different concentrations (0, 10, 50, 100, and 500 mg·L-1) of polystyrene MPs were selected as the experimental materials, and their effects on three herbaceous ornamental plants, Trifolium repens, Orychophragmus violaceus, and Impatiens balsamina, were investigated. Seed germination tendency, germination rate, and various physiological and biochemical indicators were observed in the treated plants. The germination rates and germination potentials of these plants decreased significantly as the polystyrene MP concentration increased. Root formation, as well as a decrease in root hair density, was observed. The catalase, superoxide dismutase, hydrogen peroxide, proline, soluble protein, and soluble sugar contents all showed overall trends that increased first and then decreased, which conformed to the "Plant-ES" equation. Thus, polystyrene MPs appeared to have significant inhibitory effects on the seed germination processes of herbaceous ornamental plants.


Assuntos
Microplásticos , Poliestirenos , Ecossistema , Germinação , Plantas , Plásticos , Sementes
8.
J Biomol Struct Dyn ; 39(4): 1259-1270, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32041489

RESUMO

Parkinson's disease (PD) is considered to be the second most common progressive neurodegenerative brain disorder after Alzheimer's disease, which is caused by misfolding and aggregation of Alpha-synuclein (α-synuclein). It is characterized by distinct aggregated fibrillary form of α-synuclein known as the Lewy bodies and Lewy neurites. The most promising approach to combat PD is to prevent the misfolding and subsequent aggregation of α-synuclein. Recently, Oleuropein aglycone (OleA) has been reported to stabilize the monomeric structure of α-synuclein, subsequently favoring the growth of nontoxic aggregates. Therefore, understanding the conformational dynamics of α-synuclein monomer in the presence of OleA is significant. Here, we have investigated the effect of OleA on the conformational dynamics and the aggregation propensity of α-synuclein using molecular dynamics simulation. From molecular dynamics trajectory analysis, we noticed that when OleA is bound to α-synuclein, the intramolecular distance between non-amyloid-ß component domain and C-terminal domain of α-synuclein was increased, whereas long-range hydrophobic interactions between the two region were reduced. Oleuropein aglycone was found to interact with the N-terminal domain of α-synuclein, making this region unavailable for interaction with membranes and lipids for the formation of cellular toxic aggregates. From the binding-free energy analysis, we found binding affinity between α-synuclein and OleA to be indeed high (ΔGbind = -12.56 kcal mol-1 from MM-PBSA and ΔGbind = -27.41 kcal mol-1from MM-GBSA). Our findings in this study thus substantiate the effect of OleA on the structure and stabilization of α-synuclein monomer that subsequently favors the growth of stable and nontoxic aggregates.Communicated by Ramaswamy H. Sarma.


Assuntos
Agregados Proteicos , alfa-Sinucleína , Acetatos , Monoterpenos Ciclopentânicos , Corpos de Lewy , Piranos
9.
J Biomol Struct Dyn ; 39(4): 1334-1342, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32070240

RESUMO

Alzheimer's disease (AD) is the most common progressive neurodegenerative brain disorder. It is characterized by the presence of extracellular aggregated fibrillary form of amyloid beta (Aß) peptide and intraneuronal neurofibrillary tangles caused by the hyperphosphorylation of tau protein. Monomeric form of Aß peptide in α-conformation is not toxic but it can undergo self-aggregation to form ß-conformation which is neurotoxic. The most promising approach to combat AD is to prevent the self-aggregation of Aß peptide. Recently, it has been reported that C-terminal (CTerm) of human albumin (HA) binds to the Aß1-42 peptide and impairs the Aß1-42 aggregation and promotes disassembly of Aß1-42 aggregates. In this work, using potential of mean force (PMF) and binding free energy (BFE) calculations, we have demonstrated the effect of CTerm of HA on the dimerization of Aß1-42 peptide. From the PMF profile, we noticed Aß1-42-CTerm Heterodimer (10.99 kcal mol - 1) complex to have higher disassociation energy than Aß1-42-Aß1-42 homodimer (2.23 kcal mol - 1) complex. And also from the BFE calculations, we found that the binding affinity between Aß1-42 peptide and CTerm (ΔGbind = -32.27 kcal mol - 1 from MM-GBSA and ΔGbind = -2.83 kcal mol - 1 from MM-PBSA (molecular mechanics-Poisson - Boltzmann surface area)) to be stronger than the Aß1-42 peptide and another Aß1-42 peptide (ΔGbind = -16.20 kcal mol - 1 from MM-GBSA and ΔGbind = -1.95 kcal mol - 1 from MM-PBSA). In this study, our findings from PMF and BFE analysis of the two complexes provide salient structural, binding and unbinding features and thermodynamics that support the ability of CTerm of HA in affecting the dimerization of Aß1-42. Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/tratamento farmacológico , Humanos , Fragmentos de Peptídeos , Albumina Sérica Humana
10.
Genes (Basel) ; 9(9)2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30223541

RESUMO

Long non-coding RNA (lncRNA) research in plants has recently gained momentum taking cues from studies in animals systems. The availability of next-generation sequencing has enabled genome-wide identification of lncRNA in several plant species. Some lncRNAs are inhibitors of microRNA expression and have a function known as target mimicry with the sequestered transcript known as an endogenous target mimic (eTM). The lncRNAs identified to date show diverse mechanisms of gene regulation, most of which remain poorly understood. In this review, we discuss the role of identified putative lncRNAs that may act as eTMs for nutrient-responsive microRNAs (miRNAs) in plants. If functionally validated, these putative lncRNAs would enhance current understanding of the role of lncRNAs in nutrient homeostasis in plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...