Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 161: 769-776, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29957585

RESUMO

The present study develops a correlationship among different phases of metal for developing an understanding of metal distribution and speciation, which is seldom reported in many studies. Also, the study examines the effect of sediment texture, pH, CEC, organic content and conductivity to understand the metal distribution. Bed sediment (n = 8) samples were collected from Brahmaputra river by grab sampling method to understand the spatial distribution and speciation of Cu, As and Zn. X-ray Diffraction (XRD) analysis strongly indicated the presence of arsenopyrite in Dhansirimukh site (BRS-5) sample as a dominating As containing mineral. It was found that distribution of As was relatively higher in downstream side due to increase in clay content of the sediment. Partition coefficient (kd) indicated higher mobility of Zn and Cu in comparison to As. The presence of organic matter and clay resulted in high metal content due to high CEC values, which is because of negative charge on clay and organic matter. The negative charge in clay and organic matter is due to isomorphous substitution and dissociation of organic acids, respectively. High clay content leads to Cu enrichment at BRS-4, while sandy nature of sediment at BRS-8 and absence highly active mineral leads to low Zn content. Sediment properties like organic matter and grain size were the main controlling parameters for metal concentration and its potential mobility as indicated by correlation and factor analysis. Factor analysis further revealed three probable processes governing metal enrichment and distribution viz. (i) Textural driven (ii) Metal solubility at sediment-water interface and (iii) Carbonate weathering. The study demonstrates that the textural assemblage governs metal mobility in the river sediments. Study developed a conceptual diagram for probable geochemical processes explaining the specific observations in this study, which is essential for environmental safety.


Assuntos
Arsênio/análise , Cobre/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Zinco/análise , Monitoramento Ambiental , Índia , Rios , Clima Tropical
2.
Ecotoxicol Environ Saf ; 147: 585-593, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28923723

RESUMO

Burmese Grape Leaf Extract (BGLE), a low cost adsorbent was studied for cadmium (Cd(II)) removal from metal solutions and natural water samples. Batch adsorption studies were carried out to examine the influence of contact time and initial metal concentration after characterization under scanning electron microscopy (SEM). Cd(II)adsorptiononto BGLE was best explained by pseudo-second order kinetics (R2 = 0.99) and best fitted with Langmuir isotherm model (R2 = 0.76). Beside the selective adsorption activity of BGLE towards Cd(II), only 0.1g of BGLE have shown effective adsorption of these ions with a maximum adsorption capacity (qm) of 44.72mgg-1. This study was a unique combination of laboratory experiments and field implication. Study indicates that same efficacy cannot be obtained in natural water samples as obtained in the case of laboratory due to the interference of major ions in water.


Assuntos
Cádmio/análise , Magnoliopsida/química , Extratos Vegetais/química , Folhas de Planta/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Íons , Cinética , Modelos Teóricos , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...