Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38004703

RESUMO

Oligonychus coffeae (Acari: Tetranychidae), popularly known as red spider mite (RSM) is one of the major pests of commercial tea (Camellia sinensis (L.) O. Kuntze) plantation world over. Many attempts have been made in the past to control this devastating pest using a variety of microbial bioagents, however, area-wise field success is very limited. We carried out an in vitro study to explore the potential of rhizospheric Bacillus spp. (B. amyloliquefaciens BAC1, B. subtilis LB22, and B. velezensis AB22) against O. coffeae through adulticidal and ovicidal activity. The 100% adult and egg mortality was observed with bacterial suspension (1 × 109 CFU/mL) by B. velezensis AB22, showing the lowest LC50 values for both adults and eggs of O. coffeae, i.e., 0.28 × 105 and 0.29 × 105, respectively. The study also throws some insights into the underlying mechanism through electron microscopy study and identification of some putative pesticidal metabolites from all the species. The three Bacillus species were observed to have four commonly secreted putative bioactive secondary metabolites, brevianamide A, heptadecanoic acid, thiolutin, and versimide responsible for their bio-efficacy against O. coffeae. The outcome of our study provides a strong possibility of introducing Bacillus spp. as a biological miticide and developing synthetic metabolites mimicking the mechanistic pathway involved in microbial bioefficacy.

2.
J Biomol Struct Dyn ; : 1-15, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870050

RESUMO

The tumour suppressor protein PTEN is often down-regulated in non-small cell lung cancer. A major protein promoting the lowering of the PTEN protein is WWP2. Polyphenols have been shown to promote the expression of tumour suppressor genes like PTEN. We carry out the study to check for the ability of apigenin to bind with the WWP2 protein using in-silico investigation comprising docking and simulation. We checked for the cytotoxic effect of apigenin upon the non-small cell lung cancer cell line NCI-H23. We checked the PTEN expression status at the gene and protein levels. The expression levels of the apoptotic regulators BCL2, BAX and CASPASE3 genes along with the activity levels of the caspase-3 protein were checked. The ultrastructure of the cells was analysed. Our Autodock analysis showed that apigenin bound favourably with the WWP2 protein. Molecular dynamics simulation revealed that apigenin increased the parameters of RMSD, Rg and SASA when bound with the WWP2 protein. The protein-ligand complex had hydrogen bonding and majorly van der Wal's interactions. PCA analysis revealed greater fluctuations in the apigenin-bound state of the protein. The mutant form of the WWP2 revealed similar results in the presence of apigenin. Apigenin showed efficacy against the NCI-H23 cell line and promoted PTEN protein levels, lowered BCL2 gene expression and up-regulated BAX and CASPASE3 gene expression. Increased caspase-3 activity and ultra-structural analysis revealed the occurrence of apoptosis. Thus the binding of apigenin with WWP2 could promote PTEN protein levels and lead to apoptotic activity in NCI-H23 cells.Communicated by Ramaswamy H. Sarma.

3.
Front Plant Sci ; 14: 1141506, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938007

RESUMO

The Solanaceae family is generally known to be the third most economically important plant taxon, but also harbors a host of plant pathogens. Diseases like wilt and fruit rot of solanaceous crops cause huge yield losses in the field as well as in storage. In the present study, eight isolates of Trichoderma spp. were obtained from rhizospheric micro-flora of three solanaceous crops: tomato, brinjal, and chili plants, and were subsequently screened for pre-eminent biocontrol activity against three fungal (Fusarium oxysporum f. sp. lycopersicum, Colletotrichum gloeosporioides, and Rhizoctonia solani) and one bacterial (Ralstonia solanacearum) pathogen. Morphological, ITS, and tef1α marker-based molecular identification revealed eight isolates were different strains of Trichoderma. Seven isolates were distinguished as T. harzianum while one was identified as T. asperellum. In vitro antagonistic and biochemical assays indicated significant biocontrol activity governed by all eight isolates. Two fungal isolates, T. harzianum MC2 and T. harzianum NBG were further evaluated to decipher their best biological control activity. Preliminary insights into the secondary metabolic profile of both isolates were retrieved by liquid chromatography-mass spectrometry (LC-MS). Further, a field experiment was conducted with the isolates T. harzianum MC2 and T. harzianum NBG which successfully resulted in suppression of bacterial wilt disease in tomato. Which possibly confer biocontrol properties to the identified isolates. The efficacy of these two strains in suppressing bacterial wilt and promoting plant growth in the tomato crop was also tested in the field. The disease incidence was significantly reduced by 47.50% and yield incremented by 54.49% in plants treated in combination with both the bioagents. The results of scanning electron microscopy were also in consensus with the in planta results. The results altogether prove that T. harzianum MC2 and T. harzianum NBG are promising microbes for their prospective use in agricultural biopesticide formulations.

4.
J Biomol Struct Dyn ; 41(20): 11219-11230, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36576139

RESUMO

Flavivirus infections are common in several parts of the world. Two major types of flaviviruses are dengue and zika viruses. Both these two viral infections have caused many fatalities around the world. There is an absence of a vaccine and an effective medication against these viruses. In this study, we analyzed the ability of dronabinol to act as a potential cure against these viral infections. We performed the docking of dronabinol with several viral proteins followed by molecular dynamics simulation, MM/PBSA and PCA analysis. We checked the ability of the polyphenol dronabinol to interfere with the binding of viral helicases to their cellular targets. We performed 2 D-QSAR studies, drug likeliness, ADMET and target prediction studies. From our study, we observed that dronabinol had the best docking ability against the helicase proteins of dengue and zika. Molecular dynamics simulation and MM/PBSA investigation confirmed the stability of the binding while PCA investigation showed a lowering of molecular motions in response to dronabinol docking to the helicases. Dronabinol interfered in the binding of the helicases to RNA. 2 D QSAR studies revealed a low IC50 value for dronabinol. Dronabinol showed favorable drug-likeness, ADMET properties and target prediction results. Thus we propose dronabinol be further investigated in-vitro as a cure against dengue and zika virus infections.Communicated by Ramaswamy H. Sarma.


Assuntos
Dengue , Infecções por Flavivirus , Flavivirus , Infecção por Zika virus , Zika virus , Humanos , Dronabinol/farmacologia , Dronabinol/metabolismo , Flavivirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...