Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37835973

RESUMO

In this work, a new lignocellulosic adsorbent was obtained and tested for crystal violet dye removal from water. The material was obtained from hart's-tongue fern (Asplenium scolopendrium) leaves after minimal processing, without chemical or thermal treatment. The surface of the material was characterized using a variety of techniques, including FTIR, SEM, and color analysis. The effect of various factors on the adsorption capacity was then investigated and discussed. The kinetic and equilibrium studies showed that the general-order kinetic model and the Sips isotherm are the most suitable to describe the adsorption process. The equilibrium time was reached after 20 min and the maximum calculated value of the adsorption capacity was 224.2 (mg g-1). The determined values for the thermodynamic parameters indicated physical adsorption as the main mechanism involved in the process. The Taguchi method was used to optimize the adsorption conditions and identify the most influential controllable factor, which was pH. ANOVA (general linear model) was used to calculate the percentage contribution of each controllable factor to dye removal efficiency. Analysis of all the results shows that hart's-tongue fern (Asplenium scolopendrium) leaves are a very inexpensive, readily available, and effective adsorbent for removing crystal violet dye from aqueous solutions.

2.
Materials (Basel) ; 16(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37374436

RESUMO

The present study aimed to investigate the potential of a new lignocellulosic biosorbent material derived from mature leaves of sour cherry (Prunus cerasus L.) for removing methylene blue and crystal violet dyes from aqueous solutions. The material was first characterized using several specific techniques (SEM, FTIR, color analysis). Then, the adsorption process mechanism was investigated through studies related to adsorption equilibrium, kinetics, and thermodynamics. A desorption study was also performed. Results showed that the Sips isotherm provided the best fit for the adsorption process of both dyes, with a maximum adsorption capacity of 168.6 (mg g-1) for methylene blue and 524.1 (mg g-1) for crystal violet, outperforming the capacity of other similar adsorbents. The contact time needed to reach equilibrium was 40 min for both studied dyes. The Elovich equation is the most suitable model for describing the adsorption of methylene blue, while the general order model is better suited for the adsorption of crystal violet dye. Thermodynamic analyses revealed the adsorption process to be spontaneous, favorable, and exothermic, with physical adsorption involved as the primary mechanism. The obtained results suggest that sour cherry leaves powder can be a highly efficient, eco-friendly, and cost-effective adsorbent for removing methylene blue and crystal violet dyes from aqueous solutions.

3.
Polymers (Basel) ; 14(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36145969

RESUMO

The performance of a new eco-friendly adsorbent, obtained from motherwort (Leonurus cardiaca L.) biomass after minimum processing, in crystal violet dye removal from aqueous solutions was studied. Firstly, the adsorbent material was characterized using several technics, such as FTIR, pHPZC determination, SEM and color analysis. The next step was to determine the influence of initial dye concentration, contact time, temperature, pH, adsorbent dose and ionic strength on adsorbent adsorption capacity. Equilibrium, kinetic, thermodynamic, optimization and desorption studies were performed in a batch system for studying all aspects related to the adsorption process. The sips isotherm best fit the experimental data with a predicted maximum adsorption capacity of 125.6 (mg g-1). The kinetic data indicate that equilibrium is reached at 50 min and that general order is the best kinetic model to describe the dye retention. The process is endothermic, spontaneous, favorable and supposed to be a physical adsorption. In addition to establishing the optimal adsorption conditions, Taguchi methods and ANOVA analysis showed that the pH is the most influencing parameter of the adsorption process, having a contribution of 61.64%. All the presented data show that the motherwort biomass powder is very suitable to be used as at low-cost, easy available and effective adsorbent for the crystal violet dye removal from aqueous solutions.

4.
Materials (Basel) ; 15(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36013644

RESUMO

This paper presents the synthesis of eight new pyrazole azo dyes using ethyl 5-amino-3-methyl-1H-pyrazole-4-carboxylate as the diazotization component and various active methylene derivatives as coupling components. These new azo dyes were characterized by spectroscopic (FT-IR, UV-VIS), and spectrometric (1H NMR, 13C NMR, MS) analyses. The dye structures were modeled by the MMFF94s force field and quantum chemical density functional theory (DFT) calculations using the B3LYP functional and the 6-311G(d,p) basis set, in the gas phase. Weak electrostatic hydrogen bonds for the azo and hydrazo dye tautomers were found in the ground state. The CIS, TD (using the B3LYP and M06-2X functionals), and ZINDO methods were used to estimate the dye UV-VIS spectra in ethanol, which were compared with the experimental ones. The anti-configuration arrangement of the π-bonds and the presence of the prevalent hydrazo dye tautomer were supported by the computed 1H NMR and 13C NMR spectra. A good accordance between the experimental and predicted absorption maxima and chemical shifts was observed. Color investigations using the CIEL*a*b* space were conducted for all dyes in powder and for their mixtures in water-based acrylic resins. The results confirm the newly synthesized dyes' color properties and that they might be used for light color paints in the varnishes industry.

5.
Polymers (Basel) ; 14(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35631848

RESUMO

In this work, raspberry (Rubus idaeus) leaves were converted to powder and used as a new natural lignocellulosic low-cost adsorbent for methylene blue removal from aqueous solutions. Different techniques (FTIR, SEM, color analysis, and pHPZC determination) were applied for adsorbent characterization. The effects of pH, ionic strength, contact time, adsorbent dose, initial deconcentration, and temperature on adsorption capacity were investigated. Equilibrium, kinetic, and thermodynamic studies have shown that the adsorption is best described by the Sips isotherm and pseudo-second-order kinetic model and that the process is spontaneous, favorable, and endothermic, involving physisorption as the main mechanism. The maximum adsorption capacity was 244.6 (mg g-1) higher compared to other adsorbents based on plant leaves. The Taguchi method and the ANOVA analysis were used to optimize the adsorption conditions. The contact time was the factor with the highest influence on the process, while the temperature had the lowest influence. A desorption study was also performed to determine the possibility of adsorbent regeneration.

6.
Polymers (Basel) ; 14(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35267807

RESUMO

In this study, a new lignocellulosic bioadsorbent, bilberry (Vaccinium myrtillus L.) leaves powder, was used to remove the methylene blue dye from aqueous solutions. The characterization of the adsorbent was performed by FTIR, SEM and color analysis. The influence of pH, contact time, adsorbent dose, initial dye concentration, temperature and ionic strength on the adsorption process were followed. Equilibrium, kinetic, and thermodynamic studies were conducted in order to understand the adsorption process mechanism. Process optimization was performed using the Taguchi method. Sips isotherm and general order kinetic model characterize the adsorption process. The maximum adsorption capacity, 200.4 (mg g-1), was better compared with other similar bioadsorbents. Thermodynamic parameters indicated that the adsorption process is spontaneous, favorable and endothermic and also that physisorption is involved in the process. The factor with the highest influence on the dye removal process was pH, followed by contact time, temperature, adsorbent dose, ionic strength and initial dye concentration. The obtained results revealed that the bioadsorbent material based on bilberry (Vaccinium myrtillus L.) leaves is highly efficient for cationic dyes removal from aqueous solutions.

7.
Polymers (Basel) ; 13(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34883692

RESUMO

Fatty acids esters have a wide application as bioplasticizers and biolubricants in different industries, obtained mainly in classic batch reactors, through an equilibrium complex reaction, that involves high temperatures, long reaction times, vigorously stirring, and much energy consumption. To overcome these shortcomings, we synthesized a series of fatty acid esters (soybean oil fatty acids being the acid components with various hydroxyl compounds) through novel low energy consumption technologies using a bubble column reactor, a microwave field reactor and for comparison meaning, a classic batch reactor. The obtained bioesters physicochemical properties were similar to one another, a good concordance among their rheological properties was obtained, but the energetic consumption is lower when using the bubble column or the microwave reactors instead of the classical batch reactor.

8.
Materials (Basel) ; 14(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34640066

RESUMO

In this research, dry bean pods husks (DBPH) were used as an adsorbent material after minimum processing (without chemical substances consumption and without thermal treatment) to remove methylene blue from aqueous solutions. The adsorbent surface characteristics were investigated using SEM and FTIR analysis. For maximum removal efficiency, several parameters that influence the dye adsorption were optimized using the Taguchi method. Equilibrium and kinetic modeling, along with thermodynamic studies, were conducted to elucidate the adsorption mechanism. Taguchi experimental design showed that the factor with the highest influence was the adsorbent dose, with a percent contribution established by the ANOVA analysis of 40.89%. Langmuir isotherm and pseudo-second order kinetic model characterizes the adsorption process. The maximum adsorption capacity, 121.16 (mg g-1), is higher than other similar adsorbents presented in scientific literature. Thermodynamic parameters indicate a spontaneous, favorable and endothermic adsorption process, and their values show that physical adsorption is involved in the process. The obtained results, and the fact that adsorbent material is inexpensive and easily available, indicate that DBPH powder represents an effective absorbent for treating waters containing methylene blue. Additionally, the Taguchi method is very suitable to optimize the process.

9.
Materials (Basel) ; 14(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34640258

RESUMO

A new natural adsorbent material, Bathurst burr powder, was used to remove crystal violet dye from synthetic wastewaters. Particle size distribution and SEM and FTIR analyses were performed to characterize it. The effect of the operational adsorption process parameters (pH, ionic strength, initial dye concentration, adsorbent dose, contact time, temperature) onto the adsorption process was evaluated in a batch system. Equilibrium, kinetic, and thermodynamic studies were performed in order to understand the adsorption process. Taguchi method and ANOVA test were used to optimize the dye adsorption conditions and to establish the percentage contribution of each factor, respectively. The accuracy of the Taguchi prediction method was analyzed by correlating the predicted dye removal efficiency with the experimentally determined one. The particle size distribution analysis showed that 82.15% of the adsorbent particles have an average size below 0.5 mm. The adsorption process followed the Langmuir isotherm and pseudo-second order kinetic model. Maximum adsorption capacity value (164.10 mg·g-1) was higher compared to many similar adsorbents. The process was endothermic, spontaneous, and favorably involving a physisorption mechanism. The Taguchi method showed that the most influential controllable factor was pH (65% contribution in adsorption efficiency) and the data analysis indicates a very good accuracy of the experimental design (R2 = 0.994). The obtained results demonstrated that Bathurst burr powder can be used as a cheap and efficient adsorbent for crystal violet dye removal from aqueous solution.

10.
Sci Rep ; 10(1): 16100, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999344

RESUMO

The aim of this study is the rapid detection of food pressed oils adulteration with their refined versions, using UV-Vis spectroscopy. The study investigates some common oil physico-chemical parameters such are: density, viscosity, refractive index, acid index, peroxide value, saponification index, to detect differences between cold pressed oils versus refined ones, for some food-grade oils found on Romanian market, as well as FT-IR spectroscopy and GC-MS analytical method, obtaining similar results to those presented in the literature data. The difference between some of the obtained results is not relevant for telling the cold-pressed oils from their refined version for adulteration investigation purpose. Colour analysis instead is a very good method to differentiate a cold pressed oil from a refined one. Taking this into account, the cold pressed oils and their refined versions were mixed in different proportions, and their colour properties were analyzed, obtaining linear dependences for a* and b* CIE L*a*b* parameters with cold pressed oil content in the mixture. Dependence equations were proposed.

11.
Sci Rep ; 10(1): 17676, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077788

RESUMO

In this study, the potential of a new low-cost adsorbent, Syringa vulgaris leaves powder, for methylene blue adsorption from aqueous solution was investigated. The adsorbent surface was examined using SEM and FTIR techniques. The experiments were conducted, in batch system, to find out the effect of pH, contact time, adsorbent dose, initial dye concentration, temperature and ionic strength on dye adsorption. The process is best described by Langmuir isotherm and the pseudo second order kinetic model. Maximum adsorption capacity, 188.2 (mg g-1), is better than other similar adsorbent materials. Thermodynamic parameters revealed a spontaneous and endothermic process, suggesting a physisorption mechanism. A Taguchi orthogonal array (L27) experimental design was used to determine the optimum conditions for the removal of dye. Various desorbing agents were used to investigate the regeneration possibility of used adsorbent. Results suggest that the adsorbent material is very effective for removal of methylene blue from aqueous solutions.


Assuntos
Azul de Metileno/isolamento & purificação , Folhas de Planta/química , Syringa/química , Poluentes Químicos da Água/análise , Adsorção , Cinética , Microscopia Eletrônica de Varredura , Pós/química , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
12.
Bull Environ Contam Toxicol ; 100(5): 733-739, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29557493

RESUMO

Present paper investigates the phytoremediation of cobalt from wastewaters using Elodea canadensis. Bioaccumulation tests were conducted at various concentrations of cobalt ranging from 1 to 15 mg/L. Final concentrations of cobalt in wastewaters, after phytoremediation, were less than 1 mg/L. E. canadensis' hyperaccumulator character with regard to cobalt is emphasised by the amount of cobalt retained: 0.39% ± 0.02% of dry mass at an initial concentration in wastewater of 15 mg/L. After 14 days of exposure to contaminant, the biomass as well as the relative growth rate has increased with the amount of cobalt in wastewaters, the plant manifesting an excellent tolerance to cobalt exposure. Adsorption of cobalt ions by E. canadensis can be well described by the Langmuir adsorption isotherm and the pseudo-second-order model equation.


Assuntos
Biodegradação Ambiental , Cobalto/metabolismo , Hydrocharitaceae/metabolismo , Poluentes Químicos da Água/metabolismo , Adsorção , Biomassa , Cobalto/análise , Cinética , Águas Residuárias/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...