Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044684

RESUMO

The sealing capacity of magnetofluidic (MF) rotating seals is limited by the highest magnetization of the sealing ferrofluids (FFs) of about 1000 G (80 kA m-1). A sharp, almost an order of magnitude, increase in the supported pressure drop is possible by using a magnetorheological (MR) suspension as sealing fluid, owing to the much higher saturation magnetization of MR fluids compared to FFs. However, rotating seals with MR fluids have several shortcomings, such as a significant increase of the friction torque due to the growth of shear stress in the strong magnetic field specific to MF seals and leakage of the non-magnetic carrier liquid. At least partly, these issues can be avoided by using ferrofluid based extremely bidisperse MR suspensions of micrometer-sized iron (Fe) particles dispersed in a ferrofluid, as sealing fluid. The composite Fe3O4-Fe magnetic fluid used in this study consisted of hundreds of nanometers up to few microns size structures of interconnected (welded) Fe nanoparticles (FeMNPs) dispersed in a high colloidal stability ferrofluid with 500 G (40 kA m-1) saturation magnetization. The volume fraction of iron NPs varies from 0.5 to 15% in the ferrofluid carrier which significantly increases the magnetization and simultaneously produces important changes of flow properties in magnetic field of the resulting composite fluid, from Newtonian to strongly non-Newtonian behavior. The evaluation of the magnetic and magnetorheological behavior includes the dependence of magnetization, effective viscosity, magnetoviscous effect and dynamic yield stress on the volume fraction of Fe nanoparticles dispersed in the ferrofluid carrier. The seal gap filled with interconnected Fe nanospheres consists in randomly distributed microregions with a high intensity and high gradient magnetic field that captures the ferrofluid and provides a new sealing mechanism. Already a small amount of interconnected Fe nanospheres additive (2.5-5.0% volume fraction) produces four times increase of the rotating seal burst pressure, a much higher increase than what can be obtained from using a conventional magnetic fluid with the same magnetization. The nano-composite sealing magnetic fluid proved to be a cost-effective solution to significantly increase the performance of multi-stage rotating MF seals.

2.
Polymers (Basel) ; 16(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38337222

RESUMO

The accelerated degradation of alkyd resins via γ-irradiation is investigated using non-isothermal chemiluminescence. The stability qualification is possible through the comparison of emission intensities on a temperature range starting from 100 °C up to 250 °C under accelerated degradation caused by radiolysis scission. The measurements achieved in the samples of cured state resin modified by various inorganic oxides reveal the influence of metallic traces on the aging amplitude, when the thermal resistance increases as the irradiation dose is augmented. Even though the unirradiated samples present a prominent chemiluminescence intensity peak at 80 °C, the γ-processed specimens show less intense spectra under the pristine materials and the oxidation starts smoothly after 75 °C. The values of activation energies required for oxidative degradation of the sample subjected to 100 kGy are significantly higher in the composite states than in the neat resin. The degradation mechanism of polymerized resins is discussed taking into account the effects of fillers on the stability of studied epoxy resin at various temperatures when the degradation and crosslinking are in competition for the decay of free radical.

3.
Polymers (Basel) ; 15(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37631498

RESUMO

The thermal and radiation stabilities of the formulations based on ethylene-propylene-diene rubber (EPDM), which contain barium titanate (BaTiO3) doped with lanthanum and cerium oxides, were investigated by chemiluminescence and mechanical testing. The contributions of these doped fillers are related to the surface interaction between the structural defects (doping atoms, i.e., lanthanum and cerium) implanted in the filler lattice and the molecular fragments formed during the progress of degradation. These composite materials present extended durabilities with respect to the references; the oxidation periods are a minimum of three times longer than the corresponding times for pristine polymers. This behavior is associated with the scavenging activity of dopants. Mechanical testing has demonstrated the contributions of doped filler to the improvement of tensile strength and elongation at break by the restructuration of the polymer phase. Scanning electron microscopy images revealed the densification of materials in the presence of doped barium titanates. All the investigations constitute valid proof for the qualification of BaTiO3 doped with Ce as the more efficient stabilizer compared to the same inorganic filler doped with La.

4.
Polymers (Basel) ; 15(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37177336

RESUMO

This study presents the functional effects of BaTiO3 powder loaded in ethylene-propylene-diene rubber (EPDM) in three concentrations: 0, 1, and 2.5 phr. The characterization of mechanical properties, oxidation strength, and biological vulnerability is achieved on these materials subjected to an accelerated degradation stimulated by their γ-irradiation at 50 and 100 kGy. The thermal performances of these materials are improved when the content of filler becomes higher. The results obtained by chemiluminescence, FTIR-ATR, and mechanical testing indicate that the loading of 2.5 phr is the most proper composition that resists for a long time after it is γ-irradiated at a high dose. If the oxidation starts at 176 °C in the pristine polymer, it becomes significant at 188 and 210 °C in the case of composites containing 1 and 2.5 phr of filler, respectively. The radiation treatment induces a significant stability improvement measured by the enlargement of temperature range by more than 1.5 times, which explains the durability growth for the radiation-processed studied composites. The extension of the stability period is also based on the interaction between degrading polymer substrate and particle surface in the composite richest in titanate fraction when the exposure is 100 kGy was analyzed. The mechanical testing as well as the FTIR investigation clearly delimits the positive effects of carbon black on the functionality of EPDM/BaTiO3 composites. The contribution of carbon black is a defining feature of the studied composites based on the nucleation of the host matrix by which the polymer properties are effectively ameliorated.

5.
Polymers (Basel) ; 12(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486056

RESUMO

This study presents a detailed analysis of thermal and radiation resistances of low density polyethylene (LDPE)/ultra-high molecular weight polyethylene (UHMWPE) blends containing hydroxyapatite as functional filler and rosemary acting as antioxidant against oxidative degradation. Three main procedures, chemiluminescence (CL), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC), were applied for the determination of the degree of degradation when these materials are subjected to heat and radiation action. The crystallinity was also assessed for the characterization of diffusion peculiarities. The contributions of the mixing components are discussed based on their oxidation strength. The activation energies required for the oxidative degradation of the studied formulations were calculated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...