Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 416: 125801, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492778

RESUMO

Herein, we demonstrate a single-step synthesis of simple copper-doped borophosphate glasses and their unusual use for catalytic reduction of nitro groups from the aromatic nitro compounds. The copper-doped glasses were evaluated as an affordable heterogeneous catalytic glass-based material for the reduction of 4-nitrophenol by sodium borohydride. The glass matrix acts as a host and support material for in situ self-growth of zero-valent copper (Cu) nanoparticles (NPs) on the glass surface. Thus, zero-valent CuNPs are produced in situ on the glass surface that is accomplished by the interaction of copper ions with hydride ions. Using an intrinsic reaction kinetic constant, we find a catalytic activity of 0.144 L s-1 g-1 for a glass-based catalyst doped with a non-noble metal, which is an order of magnitude higher when compared to the values observed elsewhere. Furthermore, the reuse of glass catalyst after six successive cycles demonstrates an outstanding performance compared to that of the parent material. A mathematical model based on the Langmuir-Hinshelwood mechanism related to an empirical growth rate of the zero-valent CuNPs was proposed to describe the kinetic of the 4-nitrophenol catalytic hydrogenation.

2.
Environ Technol ; 36(22): 2892-902, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26013058

RESUMO

In this work, the removal of reactive blue 5G (RB5G) dye using the drying biomass of banana pseudostem (BPS) was investigated. The characterization of BPS particles was performed. Improvement in the RB5G dye removal performance at the following sorption conditions was evidenced: pH 1, 30°C sorption temperature and 40 rpm shaking, regardless of the particle size range. Kinetic RB5G dye sorption data obtained at better conditions fit well in an Elovich model. A combined Langmuir-BET isotherm model provides a good representation of the RB5G dye equilibrium sorption data, which shows the evidence of a physical sorption process on the BPS surface. Based on the results, the removal of RB5G dye molecules by BPS is based on a physical sorption process.


Assuntos
Corantes/química , Corantes/isolamento & purificação , Musa/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Corantes/análise , Concentração de Íons de Hidrogênio , Resíduos Industriais , Poluentes Químicos da Água/análise , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...