Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 5(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34857647

RESUMO

In Wilson disease, excessive copper accumulates in patients' livers and may, upon serum leakage, severely affect the brain according to current viewpoints. Present remedies aim at avoiding copper toxicity by chelation, for example, by D-penicillamine (DPA) or bis-choline tetrathiomolybdate (ALXN1840), the latter with a very high copper affinity. Hence, ALXN1840 may potentially avoid neurological deterioration that frequently occurs upon DPA treatment. As the etiology of such worsening is unclear, we reasoned that copper loosely bound to albumin, that is, mimicking a potential liver copper leakage into blood, may damage cells that constitute the blood-brain barrier, which was found to be the case in an in vitro model using primary porcine brain capillary endothelial cells. Such blood-brain barrier damage was avoided by ALXN1840, plausibly due to firm protein embedding of the chelator bound copper, but not by DPA. Mitochondrial protection was observed, a prerequisite for blood-brain barrier integrity. Thus, high-affinity copper chelators may minimize such deterioration in the treatment of neurologic Wilson disease.


Assuntos
Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Cobre/metabolismo , Molibdênio/farmacologia , Penicilamina/farmacologia , Animais , Transporte Biológico , Biomarcadores , Barreira Hematoencefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Sobrevivência Celular , Quelantes/farmacologia , Cobre/efeitos adversos , Cobre/química , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Modelos Moleculares , Tomografia por Emissão de Pósitrons , Ligação Proteica , Ratos , Albumina Sérica/química , Albumina Sérica/metabolismo , Relação Estrutura-Atividade
2.
J Hematol Oncol ; 12(1): 102, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615554

RESUMO

BACKGROUND: Early diagnosis of CNS lymphoma (CNSL) is essential for successful therapy of this rapidly progressing brain tumor. However, in patients presenting with focal brain lesions, fast and reliable diagnosis of PCNSL remains a challenge. A proliferation-inducing ligand (APRIL) and B cell activating factor (BAFF) are important factors in the pathophysiology, diagnosis, and prognosis of systemic B cell malignancies. However, their utility as biomarkers for the diagnosis of CNSL and their effects on CNSL cells remain unclear. METHODS: In this prospective study, we analyzed the levels of APRIL and BAFF in the cerebrospinal fluid (CSF) of 116 patients with suspected focal brain lesions, including 53 CNSL patients. Additionally, we serially measured their levels during chemotherapy and relapse. Furthermore, we analyzed the effect of APRIL and BAFF on two B cell lymphoma cell lines using proliferation, viability, and chemotaxis assays. RESULTS: CSF levels of APRIL and BAFF reliably differentiated CNSL from other focal brain lesions (including primary and metastatic brain tumors, autoimmune-inflammatory lesions, and neuroinfectious lesions) with a specificity of 93.7% (APRIL, BAFF) and a sensitivity of 62.3% (APRIL) and 47.1% (BAFF). Serial CSF analysis of CNSL patients during chemotherapy and relapse demonstrates a close correlation of APRIL CSF levels and the course of this disease. In vitro, APRIL and BAFF showed anti-apoptotic effects during MTX treatment and mediated chemotaxis of malignant B cells. CONCLUSION: This study extends the spectrum of valuable diagnostic biomarkers in CNSL. In patients with focal brain lesions, measurement of APRIL in CSF could help accelerating the diagnosis of CNSL. Moreover, our results highlight an important role of APRIL and BAFF in the pathophysiology of CNSL.


Assuntos
Fator Ativador de Células B/metabolismo , Biomarcadores Tumorais/sangue , Neoplasias do Sistema Nervoso Central/metabolismo , Linfoma/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Fator Ativador de Células B/genética , Quimiotaxia , Regulação Neoplásica da Expressão Gênica , Humanos , Estudos Prospectivos , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
3.
Gastroenterology ; 156(4): 1173-1189.e5, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30452922

RESUMO

BACKGROUND & AIMS: Wilson disease (WD) is an inherited disorder of copper metabolism that leads to copper accumulation and toxicity in the liver and brain. It is caused by mutations in the adenosine triphosphatase copper transporting ß gene (ATP7B), which encodes a protein that transports copper from hepatocytes into the bile. We studied ATP7B-deficient cells and animals to identify strategies to decrease copper toxicity in patients with WD. METHODS: We used RNA-seq to compare gene expression patterns between wild-type and ATP7B-knockout HepG2 cells exposed to copper. We collected blood and liver tissues from Atp7b-/- and Atp7b+/- (control) rats (LPP) and mice; some mice were given 5 daily injections of an autophagy inhibitor (spautin-1) or vehicle. We obtained liver biopsies from 2 patients with WD in Italy and liver tissues from patients without WD (control). Liver tissues were analyzed by immunohistochemistry, immunofluorescence, cell viability, apoptosis assays, and electron and confocal microscopy. Proteins were knocked down in cell lines using small interfering RNAs. Levels of copper were measured in cell lysates, blood samples, liver homogenates, and subcellular fractions by spectroscopy. RESULTS: After exposure to copper, ATP7B-knockout cells had significant increases in the expression of 103 genes that regulate autophagy (including MAP1LC3A, known as LC3) compared with wild-type cells. Electron and confocal microscopy visualized more autophagic structures in the cytoplasm of ATP7B-knockout cells than wild-type cells after copper exposure. Hepatocytes in liver tissues from patients with WD and from Atp7b-/- mice and rats (but not controls) had multiple autophagosomes. In ATP7B-knockout cells, mammalian target of rapamycin (mTOR) had decreased activity and was dissociated from lysosomes; this resulted in translocation of the mTOR substrate transcription factor EB to the nucleus and activation of autophagy-related genes. In wild-type HepG2 cells (but not ATP7B-knockout cells), exposure to copper and amino acids induced recruitment of mTOR to lysosomes. Pharmacologic inhibitors of autophagy or knockdown of autophagy proteins ATG7 and ATG13 induced and accelerated the death of ATP7B-knockout HepG2 cells compared with wild-type cells. Autophagy protected ATP7B-knockout cells from copper-induced death. CONCLUSION: ATP7B-deficient hepatocytes, such as in those in patients with WD, activate autophagy in response to copper overload to prevent copper-induced apoptosis. Agents designed to activate this autophagic pathway might decrease copper toxicity in patients with WD.


Assuntos
Apoptose , Autofagia/genética , ATPases Transportadoras de Cobre/genética , Hepatócitos/fisiologia , Degeneração Hepatolenticular/fisiopatologia , Fígado/fisiopatologia , Animais , Autofagossomos/ultraestrutura , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Benzilaminas/farmacologia , Sobrevivência Celular , Cobre/toxicidade , ATPases Transportadoras de Cobre/metabolismo , Feminino , Células Hep G2 , Hepatócitos/ultraestrutura , Humanos , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica , Mitocôndrias/ultraestrutura , Transporte Proteico , Quinazolinas/farmacologia , Ratos , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
4.
Cell Mol Gastroenterol Hepatol ; 7(3): 571-596, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30586623

RESUMO

BACKGROUND & AIMS: In Wilson disease, ATP7B mutations impair copper excretion into bile. Hepatic copper accumulation may induce mild to moderate chronic liver damage or even acute liver failure. Etiologic factors for this heterogeneous phenotype remain enigmatic. Liver steatosis is a frequent finding in Wilson disease patients, suggesting that impaired copper homeostasis is linked with liver steatosis. Hepatic mitochondrial function is affected negatively both by copper overload and steatosis. Therefore, we addressed the question of whether a steatosis-promoting high-calorie diet aggravates liver damage in Wilson disease via amplified mitochondrial damage. METHODS: Control Atp7b+/- and Wilson disease Atp7b-/- rats were fed either a high-calorie diet (HCD) or a normal diet. Copper chelation using the high-affinity peptide methanobactin was used in HCD-fed Atp7b-/- rats to test for therapeutic reversal of mitochondrial copper damage. RESULTS: In comparison with a normal diet, HCD feeding of Atp7b-/- rats resulted in a markedly earlier onset of clinically apparent hepatic injury. Strongly increased mitochondrial copper accumulation was observed in HCD-fed Atp7b-/- rats, correlating with severe liver injury. Mitochondria presented with massive structural damage, increased H2O2 emergence, and dysfunctional adenosine triphosphate production. Hepatocellular injury presumably was augmented as a result of oxidative stress. Reduction of mitochondrial copper by methanobactin significantly reduced mitochondrial impairment and ameliorated liver damage. CONCLUSIONS: A high-calorie diet severely aggravates hepatic mitochondrial and hepatocellular damage in Wilson disease rats, causing an earlier onset of the disease and enhanced disease progression.


Assuntos
Dieta , Degeneração Hepatolenticular/patologia , Fígado/patologia , Mitocôndrias/patologia , Animais , Ácidos e Sais Biliares/biossíntese , Cobre/sangue , ATPases Transportadoras de Cobre/metabolismo , Progressão da Doença , Fígado Gorduroso/patologia , Feminino , Hepatócitos/patologia , Hepatócitos/ultraestrutura , Degeneração Hepatolenticular/sangue , Inflamação/patologia , Lipídeos/biossíntese , Fígado/metabolismo , Fígado/ultraestrutura , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Peptídeos/farmacologia , Proteoma/metabolismo , Ratos
5.
Int Rev Cell Mol Biol ; 340: 209-344, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30072092

RESUMO

Aging has been linked to several degenerative processes that, through the accumulation of molecular and cellular damage, can progressively lead to cell dysfunction and organ failure. Human aging is linked with a higher risk for individuals to develop cancer, neurodegenerative, cardiovascular, and metabolic disorders. The understanding of the molecular basis of aging and associated diseases has been one major challenge of scientific research over the last decades. Mitochondria, the center of oxidative metabolism and principal site of reactive oxygen species (ROS) production, are crucial both in health and in pathogenesis of many diseases. Redox signaling is important for the modulation of cell functions and several studies indicate a dual role for ROS in cell physiology. In fact, high concentrations of ROS are pathogenic and can cause severe damage to cell and organelle membranes, DNA, and proteins. On the other hand, moderate amounts of ROS are essential for the maintenance of several biological processes, including gene expression. In this review, we provide an update regarding the key roles of ROS-mitochondria cross talk in different fundamental physiological or pathological situations accompanying aging and highlighting that mitochondrial ROS may be a decisive target in clinical practice.


Assuntos
Envelhecimento , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Animais , Metabolismo Energético , Eucariotos/metabolismo , Eucariotos/fisiologia , Humanos
6.
Toxicol In Vitro ; 51: 11-22, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29715505

RESUMO

Wilson disease (WD) is characterized by a disrupted copper homeostasis resulting in dramatically increased copper levels, mainly in liver and brain. While copper damage to mitochondria is an established feature in WD livers, much less is known about such detrimental copper effects in other organs. We therefore assessed the mitochondrial sensitivity to copper in a tissue specific manner, namely of isolated rat liver, kidney, heart, and brain mitochondria. Brain mitochondria presented with exceptional copper sensitivity, as evidenced by a comparatively early membrane potential loss, profound structural changes already at low copper dose, and a dose-dependent reduced capacity to produce ATP. This sensitivity was likely due to a copper-dependent attack on free protein thiols and due to a decreased copper reactive defense system, as further evidenced in neuroblastoma SHSY5Y cells. In contrast, an increased production of reactive oxygen species was found to be a late-stage event, only occurring in destroyed mitochondria. We therefore propose mitochondrial protein thiols as major targets of mitochondrial copper toxicity.


Assuntos
Cobre/toxicidade , Mitocôndrias/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo , Linhagem Celular Tumoral , Glutationa/metabolismo , Coração , Humanos , Rim , Fígado , Microscopia Eletrônica , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Ratos , Compostos de Sulfidrila/metabolismo
7.
J Proteome Res ; 17(4): 1677-1689, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29560722

RESUMO

High-dose ionizing radiation is known to induce adverse effects such as inflammation and fibrosis in the heart. Transcriptional regulators PPARα and TGFß are known to be involved in this radiation response. PPARα, an anti-inflammatory transcription factor controlling cardiac energy metabolism, is inactivated by irradiation. The pro-inflammatory and pro-fibrotic TGFß is activated by irradiation via SMAD-dependent and SMAD-independent pathways. The goal of this study was to investigate how altering the level of PPARα influences the radiation response of these signaling pathways. For this purpose, we used genetically modified C57Bl/6 mice with wild type (+/+), heterozygous (+/-) or homozygous (-/-) PPARα genotype. Mice were locally irradiated to the heart using doses of 8 or 16 Gy; the controls were sham-irradiated. The heart tissue was investigated using label-free proteomics 20 weeks after the irradiation and the predicted pathways were validated using immunoblotting, ELISA, and immunohistochemistry. The heterozygous PPARα mice showed most radiation-induced changes in the cardiac proteome, whereas the homozygous PPARα mice showed the least changes. Irradiation induced SMAD-dependent TGFß signaling independently of the PPARα status, but the presence of PPARα was necessary for the activation of the SMAD-independent pathway. These data indicate a central role of PPARα in cardiac response to ionizing radiation.


Assuntos
Coração/efeitos da radiação , Miocárdio/metabolismo , PPAR alfa/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Genótipo , Heterozigoto , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/química , PPAR alfa/genética , Proteômica , Transdução de Sinais , Proteínas Smad/metabolismo
8.
Mitochondrion ; 40: 1-12, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28935446

RESUMO

Western lifestyle-associated malnutrition causes steatosis that may progress to liver inflammation and mitochondrial dysfunction has been suggested as a key factor in promoting this disease. Here we have molecularly, biochemically and biophysically analyzed mitochondria from steatotic wild type and immune-compromised mice fed a Western diet (WD) - enriched in saturated fatty acids (SFAs). WD-mitochondria demonstrated lipidomic changes, a decreased mitochondrial ATP production capacity and a significant sensitivity to calcium. These changes preceded hepatocyte damage and were not associated with enhanced ROS production. Thus, WD-mitochondria do not promote steatohepatitis per se, but demonstrate bioenergetic deficits and increased sensitivity to stress signals.


Assuntos
Fígado Gorduroso/patologia , Hepatócitos/patologia , Mitocôndrias/fisiologia , Adaptação Fisiológica , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Dieta/métodos , Modelos Animais de Doenças , Ácidos Graxos/administração & dosagem , Metabolismo dos Lipídeos , Camundongos , Mitocôndrias/metabolismo
9.
Data Brief ; 15: 163-169, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29034285

RESUMO

The data presented in this article describe the fatty acid composition of chow, liver tissue and isolated liver mitochondria from mice fed for 6-24 weeks with a high caloric western diet (WD) in comparison to control diet (normal diet, ND). The fatty acid composition was measured via gas chromatography flame ionization detection (GC-FID). Moreover, WD-induced mitochondrial protein changes are presented in this work and were analyzed by mass spectrometry (LC-MS/MS). For further interpretation and discussion of the presented data please refer to the research article entitled "Mitochondrial adaptation in steatotic mice" (Einer et al., 2017) [1].

10.
Anal Biochem ; 443(1): 66-74, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23969012

RESUMO

Mitochondrial dysfunctions decisively contribute to the progression of human diseases, implying that functional tests of isolated mitochondria may furnish conclusive information for diagnosis and therapy. Classical mitochondrial isolation methods, however, lack precisely adjustable settings for cell rupture, which is the most critical step in this procedure, and this complicates subsequent analyses. Here, we present an efficient method to isolate functionally active, intact mitochondria from cultured or primary cells and minute tissue samples in a rapid, highly reproducible manner.


Assuntos
Hepatócitos/ultraestrutura , Mitocôndrias Hepáticas/ultraestrutura , Neurônios/ultraestrutura , Animais , Automação Laboratorial , Biomarcadores/metabolismo , Fracionamento Celular , Linhagem Celular Tumoral , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo , Neurônios/metabolismo , Cultura Primária de Células , Ratos , Ratos Endogâmicos BUF , Ratos Endogâmicos WKY
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...