Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 18(8): 8151-9, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-20588660

RESUMO

Two hundred eighty three uniaxial ellipsoids with sizes from 4 mm to 11 mm were measured with a coordinate measuring matching (CMM) and also scanned using a medical computed tomography (CT) machine. Their volumes were determined by counting voxels over a threshold, as well as using equivalent volumes from the length given by the RECIST 1.1 criterion (Response Evaluation Criteria in Solid Tumors). The volumetric measurements yield an order of magnitude reduction in residuals compared to the CMM measurements than the residuals of the RECIST measurements also compared to the CMM measurements.


Assuntos
Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia
2.
J Res Natl Inst Stand Technol ; 115(3): 149-77, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-27134783

RESUMO

The Food and Drug Administration (FDA) is conducting research on developing reference lung cancer lesions, called phantoms, to test computed tomography (CT) scanners and their software. FDA loaned two semi-spherical phantoms to the National Institute of Standards and Technology (NIST), called Green and Pink, and asked to have the phantoms' volumes estimated. This report describes in detail both the metrology and computational methods used to estimate the phantoms' volumes. Three sets of coordinate measuring machine (CMM) measured data were produced. One set of data involved reference surface data measurements of a known calibrated metal sphere. The other two sets were measurements of the two FDA phantoms at two densities, called the coarse set and the dense set. Two computational approaches were applied to the data. In the first approach spherical models were fit to the calibrated sphere data and to the phantom data. The second approach was to model the data points on the boundaries of the spheres with surface B-splines and then use the Divergence Theorem to estimate the volumes. Fitting a B-spline model to the calibrated sphere data was done as a reference check on the algorithm performance. It gave assurance that the volumes estimated for the phantoms would be meaningful. The results for the coarse and dense data sets tended to predict the volumes as expected and the results did show that the Green phantom was very near spherical. This was confirmed by both computational methods. The spherical model did not fit the Pink phantom as well and the B-spline approach provided a better estimate of the volume in that case.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...