Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685942

RESUMO

The inflammatory-associated corrosion of metallic dental and orthopedic implants causes significant complications, which may result in the implant's failure. The corrosion resistance can be improved with coatings and surface treatments, but at the same time, it might affect the ability of metallic implants to undergo proper osteointegration. In this work, alginate hydrogels with and without octacalcium phosphate (OCP) were made on 3D-printed (patterned) titanium alloys (Ti Group 2 and Ti-Al-V Group 23) to enhance their anticorrosion properties in simulated normal, inflammatory, and severe inflammatory conditions in vitro. Alginate (Alg) and OCP-laden alginate (Alg/OCP) hydrogels were manufactured on the surface of 3D-printed Ti substrates and were characterized with wettability analysis, XRD, and FTIR. The electrochemical characterization of the samples was carried out with open circuit potential, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). It was observed that the hydrophilicity of Alg/OCP coatings was higher than that of pure Alg and that OCP phase crystallinity was increased when samples were subjected to simulated biological media. The corrosion resistance of uncoated and coated samples was lower in inflammatory and severe inflammatory environments vs. normal media, but the hydrogel coatings on 3D-printed Ti layers moved the corrosion potential towards more nobler values, reducing the corrosion current density in all simulated solutions. These measurements revealed that OCP particles in the Alg hydrogel matrix noticeably increased the electrical charge transfer resistance at the substrate and coating interface more than with Alg hydrogel alone.


Assuntos
Alginatos , Titânio , Corrosão , Materiais Biocompatíveis , Hidrogéis , Impressão Tridimensional
2.
Sci Rep ; 13(1): 2312, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759646

RESUMO

The performance of current biomedical titanium alloys is limited by inflammatory and severe inflammatory conditions after implantation. In this study, a novel Ti-Nb-Zr-Si (TNZS) alloy was developed and compared with commercially pure titanium, and Ti-6Al-4V alloy. Electrochemical parameters of specimens were monitored during 1 h and 12 h immersion in phosphate buffered saline (PBS) as a normal, PBS/hydrogen peroxide (H2O2) as an inflammatory, and PBS/H2O2/albumin/lactate as a severe inflammatory media. The results showed an effect of the H2O2 in inflammatory condition and the synergistic behavior of H2O2, albumin, and lactate in severe inflammatory condition towards decreasing the corrosion resistance of titanium biomaterials. Electrochemical tests revealed a superior corrosion resistance of the TNZS in all conditions due to the presence of silicide phases. The developed TNZS was tested for subsequent cell culture investigation to understand its biocompatibility nature. It exhibited favorable cell-materials interactions in vitro compared with Ti-6Al-4V. The results suggest that TNZS alloy might be a competitive biomaterial for orthopedic applications.


Assuntos
Nióbio , Titânio , Titânio/química , Peróxido de Hidrogênio , Materiais Biocompatíveis/química , Ligas/química , Albuminas , Corrosão , Ácido Láctico , Teste de Materiais , Propriedades de Superfície
3.
Int J Mol Sci ; 23(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35409025

RESUMO

Since the last few decades, the development of smart hydrogels, which can respond to stimuli and adapt their responses based on external cues from their environments, has become a thriving research frontier in the biomedical engineering field. Nowadays, drug delivery systems have received great attention and smart hydrogels can be potentially used in these systems due to their high stability, physicochemical properties, and biocompatibility. Smart hydrogels can change their hydrophilicity, swelling ability, physical properties, and molecules permeability, influenced by external stimuli such as pH, temperature, electrical and magnetic fields, light, and the biomolecules' concentration, thus resulting in the controlled release of the loaded drugs. Herein, this review encompasses the latest investigations in the field of stimuli-responsive drug-loaded hydrogels and our contribution to this matter.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Sistemas de Liberação de Medicamentos/métodos , Hidrogéis/química , Concentração de Íons de Hidrogênio , Campos Magnéticos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...