Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 11917, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099778

RESUMO

In 1954, brown trout were introduced to the Kerguelen archipelago (49°S, 70°E), a pristine, sub-Antarctic environment previously devoid of native freshwater fishes. Trout began spreading rapidly via coastal waters to colonize adjacent watersheds, however, recent and unexpectedly the spread has slowed. To better understand the ecology of the brown trout here, and why their expansion has slowed, we documented the marine habitat use, foraging ecology, and environmental conditions experienced over one year by 50 acoustically tagged individuals at the colonization front. Trout mainly utilized the marine habitat proximate to their tagging site, ranging no further than 7 km and not entering any uncolonized watersheds. Nutritional indicators showed that trout were in good condition at the time of tagging. Stomach contents and isotope signatures in muscle of additional trout revealed a diet of amphipods (68%), fish (23%), isopods (6%), and zooplankton (6%). The small migration distances observed, presence of suitable habitat, and rich local foraging opportunities suggest that trout can achieve their resource needs close to their home rivers. This may explain why the expansion of brown trout at Kerguelen has slowed.


Assuntos
Ecossistema , Comportamento Alimentar/fisiologia , Espécies Introduzidas , Truta/fisiologia , Migração Animal/fisiologia , Animais , Regiões Antárticas , Ecologia , Água Doce , Geografia , Ilhas , Densidade Demográfica , Água do Mar , Temperatura
2.
Biol Rev Camb Philos Soc ; 96(5): 2304-2320, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34043292

RESUMO

Salmonids are some of the most widely studied species of fish worldwide. They span freshwater rivers and lakes to fjords and oceans; they include short- and long-distance anadromous migrants, as well as partially migratory and non-migratory populations; and exhibit both semelparous and iteroparous reproduction. Salmonid life-history strategies represent some of the most diverse on the planet. For this reason, salmonids provide an especially interesting model to study the drivers of these different life-history pathways. Over the past few decades, numerous studies and reviews have been published, although most have focused on ultimate considerations where expected reproductive success of different developmental or life-history strategies are compared. Those that considered proximate causes generally focused on genetics or the environment, with less consideration of physiology. Our objective was therefore to review the existing literature on the role of physiology as a proximate driver for life-history strategies in salmonids. This link is necessary to explore since physiology is at the core of biological processes influencing energy acquisition and allocation. Energy acquisition and allocation processes, in turn, can affect life histories. We find that life-history strategies are driven by a range of physiological processes, ranging from metabolism and nutritional status to endocrinology. Our review revealed that the role of these physiological processes can vary across species and individuals depending on the life-history decision(s) to be made. In addition, while findings sometimes vary by species, results appear to be consistent in species with similar life cycles. We conclude that despite much work having been conducted on the topic, the study of physiology and its role in determining life-history strategies in salmonids remains somewhat unexplored, particularly for char and trout (excluding brown trout) species. Understanding these mechanistic links is necessary if we are to understand adequately how changing environments will impact salmonid populations.


Assuntos
Salmonidae , Migração Animal , Animais , Humanos , Lagos , Rios , Truta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...