Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31449011

RESUMO

Due to the primary radiation force, microbubble displacement has been observed previously in the focal region of single-element and array ultrasound probes. This effect has been harnessed to increase the contact between the microbubbles and targeted endothelium for drug delivery and ultrasound molecular imaging. In this study, microbubble displacements associated with plane-wave (PW) transmission are thoroughly investigated and compared to those obtained in focused-wave (FW) transmission over a range of pulse repetition frequencies, burst lengths (BLs), peak negative pressures, and transmission frequencies. In PW mode, the displacements, depending upon the experimental conditions, are in some cases consistently higher (e.g., by 28%, when the longest BL was used at PRF = 4 kHz), and the axial displacements are spatially more uniform compared to FW mode. Statistical analysis on the measured displacements reveals a slightly different frequency dependence of statistical quantities compared to transient peak microbubble displacements, which may suggest the need to consider the size range within the tested microbubble population.


Assuntos
Meios de Contraste/química , Microbolhas , Ultrassonografia/métodos , Imagem Molecular/métodos , Transdutores , Ultrassonografia/instrumentação
2.
Langmuir ; 35(31): 10042-10051, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30543753

RESUMO

Lipid-coated microbubbles are currently used clinically as ultrasound contrast agents for echocardiography and radiology and are being developed for many new diagnostic and therapeutic applications. Accordingly, there is a growing need to engineer specific formulations by employing rational design to guide lipid selection and processing. This approach requires a quantitative relationship between lipid chemistry and interfacial properties of the microbubble shell. Just such a model is proposed here on the basis of lateral Coulomb and van der Waals interactions between lipid head- and tailgroups, using previous coarse graining and force fields developed for molecular dynamics simulations. The model predicts with sufficient accuracy the monolayer permeability, the elasticity as a function of either lipid composition or temperature, and the equilibrium spreading surface tension of the lipid onto an air/water interface. In the future, the intermolecular forces model could be employed to elucidate more complex phenomena and to engineer novel microbubble formulations.


Assuntos
Microbolhas , Fosfatidilcolinas/química , Eletricidade Estática , Modelos Químicos , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...