Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
3.
Nucleic Acids Res ; 49(19): 10956-10974, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34643711

RESUMO

Pseudomonas aeruginosa is a major cause of nosocomial infections, particularly in immunocompromised patients or in individuals with cystic fibrosis. Genome sequences reveal that most P. aeruginosa strains contain a significant number of accessory genes gathered in genomic islands. Those genes are essential for P. aeruginosa to invade new ecological niches with high levels of antibiotic usage, like hospitals, or to survive during host infection by providing pathogenicity determinants. P. aeruginosa pathogenicity island 1 (PAPI-1), one of the largest genomic islands, encodes several putative virulence factors, including toxins, biofilm genes and antibiotic-resistance traits. The integrative and conjugative element (ICE) PAPI-1 is horizontally transferable by conjugation via a specialized GI-T4SS, but the mechanism regulating this transfer is currently unknown. Here, we show that this GI-T4SS conjugative machinery is directly induced by TprA, a regulator encoded within PAPI-1. Our data indicate that the nucleotide associated protein NdpA2 acts in synergy with TprA, removing a repressive mechanism exerted by MvaT. In addition, using a transcriptomic approach, we unravelled the regulon controlled by Ndpa2/TprA and showed that they act as major regulators on the genes belonging to PAPI-1. Moreover, TprA and NdpA2 trigger an atypical biofilm structure and enhance ICE PAPI-1 transfer.


Assuntos
Proteínas de Bactérias/genética , Transferência Genética Horizontal , Ilhas Genômicas , Pseudomonas aeruginosa/genética , Transativadores/genética , Fatores de Virulência/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Cromossomos Bacterianos , Conjugação Genética , Elementos de DNA Transponíveis , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Regulon , Transativadores/metabolismo , Transcrição Gênica , Fatores de Virulência/metabolismo
5.
Cell Stem Cell ; 26(5): 657-674.e8, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32169166

RESUMO

Hematopoietic stem cells (HSCs) maintain life-long production of immune cells and can directly respond to infection, but sustained effects on the immune response remain unclear. We show that acute immune stimulation with lipopolysaccharide (LPS) induced only transient changes in HSC abundance, composition, progeny, and gene expression, but persistent alterations in accessibility of specific myeloid lineage enhancers occurred, which increased responsiveness of associated immune genes to secondary stimulation. Functionally, this was associated with increased myelopoiesis of pre-exposed HSCs and improved innate immunity against the gram-negative bacterium P. aeruginosa. The accessible myeloid enhancers were enriched for C/EBPß targets, and C/EBPß deletion erased the long-term inscription of LPS-induced epigenetic marks and gene expression. Thus, short-term immune signaling can induce C/EBPß-dependent chromatin accessibility, resulting in HSC-trained immunity, during secondary infection. This establishes a mechanism for how infection history can be epigenetically inscribed in HSCs as an integral memory function of innate immunity.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Epigênese Genética , Células-Tronco Hematopoéticas/imunologia , Imunidade Inata , Proteína beta Intensificadora de Ligação a CCAAT/genética , Epigenômica , Humanos , Mielopoese
6.
Sci Rep ; 10(1): 3077, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080219

RESUMO

c-di-GMP is a major player in the switch between biofilm and motile lifestyles. Several bacteria exhibit a large number of c-di-GMP metabolizing proteins, thus a fine-tuning of this nucleotide levels may occur. It is hypothesized that some c-di-GMP metabolizing proteins would provide the global c-di-GMP levels inside the cell whereas others would maintain a localized pool, with the resulting c-di-GMP acting at the vicinity of its production. Although attractive, this hypothesis has yet to be demonstrated in Pseudomonas aeruginosa. We found that the diguanylate cyclase DgcP interacts with the cytosolic region of FimV, a polar peptidoglycan-binding protein involved in type IV pilus assembly. Moreover, DgcP is located at the cell poles in wild type cells but scattered in the cytoplasm of cells lacking FimV. Overexpression of dgcP leads to the classical phenotypes of high c-di-GMP levels (increased biofilm and impaired motilities) in the wild-type strain, but not in a ΔfimV background. Therefore, our findings suggest that DgcP activity is regulated by FimV. The polar localization of DgcP might contribute to a local c-di-GMP pool that can be sensed by other proteins at the cell pole, bringing to light a specialized function for a specific diguanylate cyclase.


Assuntos
Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Biofilmes , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/química , Fímbrias Bacterianas/metabolismo , Modelos Biológicos , Mutação/genética , Fenótipo , Fósforo-Oxigênio Liases/química , Ligação Proteica , Domínios Proteicos , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiologia
7.
Sci Rep ; 9(1): 6496, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31019225

RESUMO

Biofilm formation is a complex process resulting from the action of imbricated pathways in response to environmental cues. In this study, we showed that biofilm biogenesis in the opportunistic pathogen Pseudomonas aeruginosa depends on the availability of RpoS, the sigma factor regulating the general stress response in bacteria. Moreover, it was demonstrated that RpoS is post-translationally regulated by the HsbR-HsbA partner switching system as has been demonstrated for its CrsR-CrsA homolog in Shewanella oneidensis. Finally, it was established that HsbA, the anti-sigma factor antagonist, has a pivotal role depending on its phosphorylation state since it binds HsbR, the response regulator, when phosphorylated and FlgM, the anti-sigma factor of FliA, when non-phosphorylated. The phosphorylation state of HsbA thus drives the switch between the sessile and planktonic way of life of P. aeruginosa by driving the release or the sequestration of one or the other of these two sigma factors.


Assuntos
Proteínas de Bactérias/genética , Biofilmes , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Fator sigma/genética , Proteínas de Bactérias/metabolismo , Modelos Genéticos , Fosforilação , Ligação Proteica , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiologia , Fator sigma/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-29530852

RESUMO

When overproduced, the multidrug efflux system MexEF-OprN increases the resistance of Pseudomonas aeruginosa to fluoroquinolones, chloramphenicol, and trimethoprim. In this work, we demonstrate that gain-of-function mutations in the regulatory gene mexT result in oligomerization of the LysR regulator MexT, constitutive upregulation of the efflux pump, and increased resistance in clinical isolates.


Assuntos
Pseudomonas aeruginosa/efeitos dos fármacos , Substituição de Aminoácidos/genética , Substituição de Aminoácidos/fisiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/genética , Testes de Sensibilidade Microbiana , Mutação/genética , Pseudomonas aeruginosa/genética
9.
Sci Rep ; 7(1): 11262, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900144

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogenic bacterium responsible for both acute and chronic infections and has developed resistance mechanisms due to its ability to promote biofilm formation and evade host adaptive immune responses. Here, we investigate the functional role of the periplasmic detector domain (GacSPD) from the membrane-bound GacS histidine kinase, which is one of the key players for biofilm formation and coordination of bacterial lifestyles. A gacS mutant devoid of the periplasmic detector domain is severely defective in biofilm formation. Functional assays indicate that this effect is accompanied by concomitant changes in the expression of the two RsmY/Z small RNAs that control activation of GacA-regulated genes. The solution NMR structure of GacSPD reveals a distinct PDC/PAS α/ß fold characterized by a three-stranded ß-sheet flanked by α-helices and an atypical major loop. Point mutations in a putative ligand binding pocket lined by positively-charged residues originating primarily from the major loop impaired biofilm formation. These results demonstrate the functional role of GacSPD, evidence critical residues involved in GacS/GacA signal transduction system that regulates biofilm formation, and document the evolutionary diversity of the PDC/PAS domain fold in bacteria.


Assuntos
Biofilmes/crescimento & desenvolvimento , Histidina Quinase/química , Histidina Quinase/metabolismo , Proteínas Periplásmicas/química , Proteínas Periplásmicas/metabolismo , Pseudomonas aeruginosa/enzimologia , Domínio Catalítico , Histidina Quinase/genética , Espectroscopia de Ressonância Magnética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Periplásmicas/genética , Mutação Puntual , Conformação Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento
10.
Nat Microbiol ; 2: 17027, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28263305

RESUMO

Pseudomonas aeruginosa is a Gram-negative bacterial pathogen associated with acute and chronic infections. The universal cyclic-di-GMP second messenger is instrumental in the switch from a motile lifestyle to resilient biofilm as in the cystic fibrosis lung. The SadC diguanylate cyclase is associated with this patho-adaptive transition. Here, we identify an unrecognized SadC partner, WarA, which we show is a methyltransferase in complex with a putative kinase, WarB. We established that WarA binds to cyclic-di-GMP, which potentiates its methyltransferase activity. Together, WarA and WarB have structural similarities with the bifunctional Escherichia coli lipopolysaccharide (LPS) O antigen regulator WbdD. Strikingly, WarA influences P. aeruginosa O antigen modal distribution and interacts with the LPS biogenesis machinery. LPS is known to modulate the immune response in the host, and by using a zebrafish infection model, we implicate WarA in the ability of P. aeruginosa to evade detection by the host.


Assuntos
GMP Cíclico/análogos & derivados , Evasão da Resposta Imune , Lipopolissacarídeos/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Animais , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Metiltransferases/metabolismo , Ligação Proteica , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Peixe-Zebra
11.
Biomol NMR Assign ; 11(1): 25-28, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27714507

RESUMO

Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen. It can infect vulnerable patients such as those with cystic fibrosis or hospitalized in intensive care units where it is responsible for both acute and chronic infection. The switch between these infections is controlled by a complex regulatory system involving the central GacS/GacA two-component system that activates the production of two small non-coding RNAs. GacS is a histidine kinase harboring one periplasmic detection domain, two inner-membrane helices and three H1/D1/H2 cytoplasmic domains. By detecting a yet unknown signal, the GacS histidine-kinase periplasmic detection domain (GacSp) is predicted to play a key role in activating the GacS/GacA pathway. Here, we present the chemical shift assignment of 96 % of backbone atoms (HN, N, C, Cα, Cß and Hα), 88 % aliphatic hydrogen atoms and 90 % of aliphatic carbon atoms of this domain. The NMR-chemical shift data, on the basis of Talos server secondary structure predictions, reveal that GacSp consists of 3 ß-strands, 3 α-helices and a major loop devoid of secondary structures.


Assuntos
Histidina Quinase/química , Histidina Quinase/metabolismo , Ressonância Magnética Nuclear Biomolecular , Periplasma/metabolismo , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/enzimologia , Sequência de Aminoácidos
12.
J Exp Med ; 213(11): 2269-2279, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27811055

RESUMO

Myeloablative treatment preceding hematopoietic stem cell (HSC) and progenitor cell (HS/PC) transplantation results in severe myeloid cytopenia and susceptibility to infections in the lag period before hematopoietic recovery. We have previously shown that macrophage colony-stimulating factor (CSF-1; M-CSF) directly instructed myeloid commitment in HSCs. In this study, we tested whether this effect had therapeutic benefit in improving protection against pathogens after HS/PC transplantation. M-CSF treatment resulted in an increased production of mature myeloid donor cells and an increased survival of recipient mice infected with lethal doses of clinically relevant opportunistic pathogens, namely the bacteria Pseudomonas aeruginosa and the fungus Aspergillus fumigatus M-CSF treatment during engraftment or after infection efficiently protected from these pathogens as early as 3 days after transplantation and was effective as a single dose. It was more efficient than granulocyte CSF (G-CSF), a common treatment of severe neutropenia, which showed no protective effect under the tested conditions. M-CSF treatment showed no adverse effect on long-term lineage contribution or stem cell activity and, unlike G-CSF, did not impede recovery of HS/PCs, thrombocyte numbers, or glucose metabolism. These results encourage potential clinical applications of M-CSF to prevent severe infections after HS/PC transplantation.


Assuntos
Aspergilose/tratamento farmacológico , Aspergilose/prevenção & controle , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Fator Estimulador de Colônias de Macrófagos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/prevenção & controle , Animais , Aspergilose/sangue , Aspergilose/microbiologia , Aspergillus/efeitos dos fármacos , Aspergillus/fisiologia , Glicemia/metabolismo , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos Endogâmicos C57BL , Mielopoese/efeitos dos fármacos , Infecções por Pseudomonas/sangue , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia
13.
PLoS Genet ; 12(5): e1006032, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27176226

RESUMO

In response to environmental changes, Pseudomonas aeruginosa is able to switch from a planktonic (free swimming) to a sessile (biofilm) lifestyle. The two-component system (TCS) GacS/GacA activates the production of two small non-coding RNAs, RsmY and RsmZ, but four histidine kinases (HKs), RetS, GacS, LadS and PA1611, are instrumental in this process. RetS hybrid HK blocks GacS unorthodox HK autophosphorylation through the formation of a heterodimer. PA1611 hybrid HK, which is structurally related to GacS, interacts with RetS in P. aeruginosa in a very similar manner to GacS. LadS hybrid HK phenotypically antagonizes the function of RetS by a mechanism that has never been investigated. The four sensors are found in most Pseudomonas species but their characteristics and mode of signaling may differ from one species to another. Here, we demonstrated in P. aeruginosa that LadS controls both rsmY and rsmZ gene expression and that this regulation occurs through the GacS/GacA TCS. We additionally evidenced that in contrast to RetS, LadS signals through GacS/GacA without forming heterodimers, either with GacS or with RetS. Instead, we demonstrated that LadS is involved in a genuine phosphorelay, which requires both transmitter and receiver LadS domains. LadS signaling ultimately requires the alternative histidine-phosphotransfer domain of GacS, which is here used as an Hpt relay by the hybrid kinase. LadS HK thus forms, with the GacS/GacA TCS, a multicomponent signal transduction system with an original phosphorelay cascade, i.e. H1LadS→D1LadS→H2GacS→D2GacA. This highlights an original strategy in which a unique output, i.e. the modulation of sRNA levels, is controlled by a complex multi-sensing network to fine-tune an adapted biofilm and virulence response.


Assuntos
Proteínas de Bactérias/genética , Histidina Quinase/genética , Pseudomonas aeruginosa/genética , Fatores de Transcrição/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Isoformas de Proteínas , Pequeno RNA não Traduzido/genética , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Virulência
14.
Pathogens ; 3(2): 309-40, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25437802

RESUMO

Pseudomonas aeruginosa is a Gram-negative environmental species and an opportunistic microorganism, establishing itself in vulnerable patients, such as those with cystic fibrosis (CF) or those hospitalized in intensive care units (ICU). It has become a major cause of nosocomial infections worldwide and a serious threat to Public Health because of overuse and misuse of antibiotics that have selected highly resistant strains against which very few therapeutic options exist. Herein is illustrated the intraclonal evolution of the genome of sequential isolates collected in a single CF patient from the early phase of pulmonary colonization to the fatal outcome. We also examined at the whole genome scale a pair of genotypically-related strains made of a drug susceptible, environmental isolate recovered from an ICU sink and of its multidrug resistant counterpart found to infect an ICU patient. Multiple genetic changes accumulated in the CF isolates over the disease time course including SNPs, deletion events and reduction of whole genome size. The strain isolated from the ICU patient displayed an increase in the genome size of 4.8% with major genetic rearrangements as compared to the initial environmental strain. The annotated genomes are given in free access in an interactive web application WallGene  designed to facilitate large-scale comparative analysis and thus allowing investigators to explore homologies and syntenies between P. aeruginosa strains, here PAO1 and the five clinical strains described.

15.
Methods Mol Biol ; 1149: 225-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24818909

RESUMO

In Pseudomonas aeruginosa, identification of new partners of a protein of interest could give precious clues to decipher a biological process in which this protein is involved. However, genes encoding for partners of a protein of interest are unknown and frequently scattered throughout the genome. We describe herein the construction and the use of pan-genomic bacterial two-hybrid libraries to identify new partners of a protein of interest encoded by P. aeruginosa.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Pseudomonas aeruginosa/metabolismo , Técnicas do Sistema de Duplo-Híbrido , AMP Cíclico/biossíntese , Genes Reporter , Genoma Bacteriano , Plasmídeos/metabolismo , Ligação Proteica , Pseudomonas aeruginosa/genética , Reprodutibilidade dos Testes
16.
Methods Mol Biol ; 1149: 555-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24818932

RESUMO

Although the completion and annotation of the entire genomic DNA sequence of Pseudomonas aeruginosa PAO1 strain has been carried out, an important number of genes are still of unknown function and many genetic elements involved in various regulatory pathways like small RNA are still unrevealed. One of the strategies to identify gene function or genetic elements is the construction and utilization of DNA genomic library. Here, we describe the construction a P. aeruginosa DNA genomic library.


Assuntos
DNA Bacteriano/genética , Biblioteca Genômica , Genômica/métodos , Pseudomonas aeruginosa/genética , Plasmídeos/genética
17.
PLoS One ; 9(4): e95936, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24780952

RESUMO

Pseudomonas aeruginosa, a human opportunistic pathogen, is capable of provoking acute and chronic infections that are associated with defined sets of virulence factors. During chronic infections, the bacterium accumulates mutations that silence some and activate other genes. Here we show that the cystic fibrosis isolate CHA exhibits a unique virulence phenotype featuring a mucoid morphology, an active Type III Secretion System (T3SS, hallmark of acute infections), and no Type VI Secretion System (H1-T6SS). This virulence profile is due to a 426 bp deletion in the 3' end of the gacS gene encoding an essential regulatory protein. The absence of GacS disturbs the Gac/Rsm pathway leading to depletion of the small regulatory RNAs RsmY/RsmZ and, in consequence, to expression of T3SS, while switching off the expression of H1-T6SS and Pel polysaccharides. The CHA isolate also exhibits full ability to swim and twitch, due to active flagellum and Type IVa pili. Thus, unlike the classical scheme of balance between virulence factors, clinical strains may adapt to a local niche by expressing both alginate exopolysaccharide, a hallmark of membrane stress that protects from antibiotic action, host defences and phagocytosis, and efficient T3S machinery that is considered as an aggressive virulence factor.


Assuntos
Fibrose Cística/microbiologia , Deleção de Genes , Genes Bacterianos , Pseudomonas aeruginosa/genética , Virulência/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biofilmes , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/patogenicidade , Homologia de Sequência de Aminoácidos
18.
PLoS Pathog ; 8(11): e1003052, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209420

RESUMO

Bacterial biofilm is considered as a particular lifestyle helping cells to survive hostile environments triggered by a variety of signals sensed and integrated through adequate regulatory pathways. Pseudomonas aeruginosa, a Gram-negative bacterium causing severe infections in humans, forms biofilms and is a fantastic example for fine-tuning of the transition between planktonic and community lifestyles through two-component systems (TCS). Here we decipher the regulon of the P. aeruginosa response regulator PprB of the TCS PprAB. We identified genes under the control of this TCS and once this pathway is activated, analyzed and dissected at the molecular level the PprB-dependent phenotypes in various models. The TCS PprAB triggers a hyper-biofilm phenotype with a unique adhesive signature made of BapA adhesin, a Type 1 secretion system (T1SS) substrate, CupE CU fimbriae, Flp Type IVb pili and eDNA without EPS involvement. This unique signature is associated with drug hyper-susceptibility, decreased virulence in acutely infected flies and cytotoxicity toward various cell types linked to decreased Type III secretion (T3SS). Moreover, once the PprB pathway is activated, decreased virulence in orally infected flies associated with enhanced biofilm formation and dissemination defect from the intestinal lumen toward the hemolymph compartment is reported. PprB may thus represent a key bacterial adaptation checkpoint of multicellular and aggregative behavior triggering the production of a unique matrix associated with peculiar antibiotic susceptibility and attenuated virulence, a particular interesting breach for therapeutic intervention to consider in view of possible eradication of P. aeruginosa biofilm-associated infections.


Assuntos
Adesinas Bacterianas/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Adesinas Bacterianas/genética , Animais , Linhagem Celular , Drosophila melanogaster , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo
19.
Microbiology (Reading) ; 158(Pt 8): 1964-1971, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22628483

RESUMO

Bacterial gene regulation is controlled by complex regulatory cascades which integrate input environmental signals and adapt specific and adequate output cellular responses. These complex networks are far from being elucidated, in particular in Pseudomonas aeruginosa. In the present study, we developed bacterial two-hybrid genome fragment libraries of the P. aeruginosa PAO1 strain to identify potential partners involved in the HptB/HsbR/HsbA pathway. This powerful tool, validated by the interaction previously described between HsbR and HsbA proteins, allowed us to demonstrate that the HsbR response regulator dimerizes through its PP2C/ATPase C-terminal effector domain, an observation further confirmed by pull-down experiments. This will also allow us to identify further new partners in this cascade.


Assuntos
Genoma Bacteriano , Pseudomonas aeruginosa/genética , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biblioteca Genômica , Ligação Proteica , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo
20.
Plasmid ; 67(3): 245-51, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22212534

RESUMO

A method for replacing endogenous promoter by a constitutive promoter in Pseudomonas aeruginosa is described. Plasmid pKNG101, a broadly used shuttle suicide vector in P. aeruginosa, was improved to allow chromosomal introduction of a Plac promoter in front of any kind of gene especially those with unknown function. Using this strategy alleviates the need for cloning difficulties encountered in this bacteria and antibiotic marker selection.


Assuntos
Cromossomos Bacterianos/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Loci Gênicos , Pseudomonas aeruginosa/genética , Clonagem Molecular , DNA Bacteriano/isolamento & purificação , Genes Bacterianos , Plasmídeos , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/crescimento & desenvolvimento , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...