Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Opin Drug Discov ; 19(1): 33-42, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37887266

RESUMO

INTRODUCTION: The concept of Digital Twins (DTs) translated to drug development and clinical trials describes virtual representations of systems of various complexities, ranging from individual cells to entire humans, and enables in silico simulations and experiments. DTs increase the efficiency of drug discovery and development by digitalizing processes associated with high economic, ethical, or social burden. The impact is multifaceted: DT models sharpen disease understanding, support biomarker discovery and accelerate drug development, thus advancing precision medicine. One way to realize DTs is by generative artificial intelligence (AI), a cutting-edge technology that enables the creation of novel, realistic and complex data with desired properties. AREAS COVERED: The authors provide a brief introduction to generative AI and describe how it facilitates the modeling of DTs. In addition, they compare existing implementations of generative AI for DTs in drug discovery and clinical trials. Finally, they discuss technical and regulatory challenges that should be addressed before DTs can transform drug discovery and clinical trials. EXPERT OPINION: The current state of DTs in drug discovery and clinical trials does not exploit the entire power of generative AI yet and is limited to simulation of a small number of characteristics. Nonetheless, generative AI has the potential to transform the field by leveraging recent developments in deep learning and customizing models for the needs of scientists, physicians and patients.


Assuntos
Inteligência Artificial , Pesquisa Biomédica , Humanos , Simulação por Computador , Desenvolvimento de Medicamentos , Descoberta de Drogas , Ensaios Clínicos como Assunto
2.
Front Physiol ; 14: 1058720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304818

RESUMO

Introduction: Hematologists analyze microscopic images of red blood cells to study their morphology and functionality, detect disorders and search for drugs. However, accurate analysis of a large number of red blood cells needs automated computational approaches that rely on annotated datasets, expensive computational resources, and computer science expertise. We introduce RedTell, an AI tool for the interpretable analysis of red blood cell morphology comprising four single-cell modules: segmentation, feature extraction, assistance in data annotation, and classification. Methods: Cell segmentation is performed by a trained Mask R-CNN working robustly on a wide range of datasets requiring no or minimum fine-tuning. Over 130 features that are regularly used in research are extracted for every detected red blood cell. If required, users can train task-specific, highly accurate decision tree-based classifiers to categorize cells, requiring a minimal number of annotations and providing interpretable feature importance. Results: We demonstrate RedTell's applicability and power in three case studies. In the first case study we analyze the difference of the extracted features between the cells coming from patients suffering from different diseases, in the second study we use RedTell to analyze the control samples and use the extracted features to classify cells into echinocytes, discocytes and stomatocytes and finally in the last use case we distinguish sickle cells in sickle cell disease patients. Discussion: We believe that RedTell can accelerate and standardize red blood cell research and help gain new insights into mechanisms, diagnosis, and treatment of red blood cell associated disorders.

3.
PLoS Comput Biol ; 18(10): e1010640, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36256678

RESUMO

Cells must continuously adjust to changing environments and, thus, have evolved mechanisms allowing them to respond to repeated stimuli. While faster gene induction upon a repeated stimulus is known as reinduction memory, responses to repeated repression have been less studied so far. Here, we studied gene repression across repeated carbon source shifts in over 1,500 single Saccharomyces cerevisiae cells. By monitoring the expression of a carbon source-responsive gene, galactokinase 1 (Gal1), and fitting a mathematical model to the single-cell data, we observed a faster response upon repeated repressions at the population level. Exploiting our single-cell data and quantitative modeling approach, we discovered that the faster response is mediated by a shortened repression response delay, the estimated time between carbon source shift and Gal1 protein production termination. Interestingly, we can exclude two alternative hypotheses, i) stronger dilution because of e.g., increased proliferation, and ii) a larger fraction of repressing cells upon repeated repressions. Collectively, our study provides a quantitative description of repression kinetics in single cells and allows us to pinpoint potential mechanisms underlying a faster response upon repeated repression. The computational results of our study can serve as the starting point for experimental follow-up studies.


Assuntos
Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae , Carbono/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...