Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomater Sci Polym Ed ; 9(12): 1279-304, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9860170

RESUMO

The effect of alkaline hydrolysis on several surface properties of poly(hydroxybutyrate-hydroxyvalerate) (92/8) (PHB/HV) and poly(epsilon-caprolactone) (PCL) films and of poly(ethylene terephtalate) (PET) track-etched membranes have been characterized, as well as the adsorption of three proteins normally encountered by mammalian cells in vivo, namely albumin, collagen, and fibronectin. The water contact angle decreases and the number of -COOH functions accessible to a chemical reaction at the surface of PCL increases with alkaline hydrolysis. Analysis by atomic force microscopy pictures reveals a change in surface morphology. The modifications of surface properties are correlated with a two times increase of the adsorption of three radiolabelled proteins. The hydrolysis results in a slight increase in the water contact angle of one face of the PHB/HV film and a sharp increase in the number of -COOH functions. Important morphology changes are also induced. The adsorption of the radiolabelled proteins is almost 100 times higher on the hydrolyzed polymer than on the native surface. The increase in hydrophilicity of different PET batches correlates to an increase in the number of -COOH functions. Nevertheless, the surface chemical composition and rugosity are constant and no significant difference in the amount of radiolabelled fibronectin adsorbed on the different surfaces is detectable. In conclusion, the effect of hydrolysis on the surface properties of each of the polyesters studied as well as the proteins adsorption on the different surfaces are different. The results strongly support the hypothesis that, in the system studied, parameters other than hydrophilicity influence protein adsorption: the main parameters that might play a role are the total surface area accessible to the proteins, as well as the surface chemical composition.


Assuntos
Albuminas/química , Colágeno/química , Fibronectinas/química , Poliésteres/química , Polietilenotereftalatos/química , Adsorção , Animais , Materiais Biocompatíveis/química , Ensaio de Imunoadsorção Enzimática , Hidrólise , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Contagem de Cintilação , Espectrometria por Raios X , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...