Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(4): 861-868, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36755711

RESUMO

Reaction of the potassium pentamethylcyclopentadienyl iridate tris-hydride K[IrCp*H3] with UCl4 and ThCl4(DME)2 led to the complete replacement of the halide ligands to generate multimetallic complexes U{(µ-H)3IrCp*}4 (1) and Th{[(µ-H2)(H)IrCp*]2[(µ-H)3IrCp*]2} (2), respectively. These analogues feature a significant discrepancy in hydride bonding modes; 1 contains twelve bridging hydrides while 2 contains ten bridging hydrides and two terminal, Ir-bound hydrides. Use of a U(iii) starting material, UI3(1,4-dioxane)1.5, resulted in the octanuclear complex {U[(µ2-H3)IrCp*]2[(µ3-H2)IrCp*]}2 (3). Computational studies indicate significant bonding character between U/Th and Ir in 1 and 2, with f-orbital involvement in the singly-occupied molecular orbitals of the uranium species 1. In addition, these studies attribute the variation in hydride bonding between 1 and 2 to differences in dispersion effects.

2.
Inorg Chem ; 61(23): 8955-8965, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35654478

RESUMO

Reaction of the uranium(III) bis(amidinate) aryl complex {TerphC(NiPr)2}2U(Terph) (2, where Terph = 4,4″-di-tert-butyl-m-terphenyl-2'-yl) with a strong reductant enabled isolation of isomeric uranium(III) bis(amidinate) aryl product {TerphC(NiPr)2}2U(Terph*) (3, where Terph* = 4,4″-di-tert-butyl-m-terphenyl-4'-yl). In terms of connectivity, 3 differs from 2 only in the positions of the U-C and C-H bonds on the central aryl ring of the m-terphenyl-based ligand. A deuterium labeling study ruled out mechanisms for this isomerization involving intermolecular abstraction or deprotonation of the ligand C-H bonds activated during the reaction. Due to the complexity of this rapid, heterogeneous reaction, experimental studies could not further distinguish between two different intramolecular C-H activation mechanisms. However, high-level computational studies were consistent with a mechanism that included two sets of unimolecular, mononuclear C-H oxidative addition and reductive elimination steps involving uranium(II/IV).

3.
Chem Soc Rev ; 51(9): 3735-3758, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35451437

RESUMO

The diverse coordination modes and electronic features of actinide complexes of porphyrins and related oligopyrrolic systems (referred to as "porpyrinoids") have been the subject of interest since the 1960s. Given their stability and accessibility, most work with actinides has focused on thorium and uranium. This trend is also seen in the case of porphyrinoid-based complexation studies. Nevertheless, the diversity of ligand environments provided by porphyrinoids has led to the stabilization of a number of unique complexes with the early actinides that are often without structural parallel within the broader coordination chemical lexicon. This review summarizes key examples of prophyrinoid actinide complexes reported to date, including the limited number of porphyrinoid systems involving transuranic elements. The emphasis will be on synthesis and structure; however, the electronic features and reactivity pattern of representative systems will be detailed as well. Coverage is through December of 2021.


Assuntos
Elementos da Série Actinoide , Porfirinas , Urânio , Ligantes , Porfirinas/química , Tório/química , Urânio/química
4.
J Am Chem Soc ; 143(47): 19748-19760, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34787416

RESUMO

Two-electron reduction of the amidate-supported U(III) mono(arene) complex U(TDA)3 (2) with KC8 yields the anionic bis(arene) complex [K[2.2.2]cryptand][U(TDA)2] (3) (TDA = N-(2,6-di-isopropylphenyl)pivalamido). EPR spectroscopy, magnetic susceptibility measurements, and calculations using DFT as well as multireference CASSCF methods all provide strong evidence that the electronic structure of 3 is best represented as a 5f4 U(II) metal center bound to a monoreduced arene ligand. Reactivity studies show 3 reacts as a U(I) synthon by behaving as a two-electron reductant toward I2 to form the dinuclear U(III)-U(III) triiodide species [K[2.2.2]cryptand][(UI(TDA)2)2(µ-I)] (6) and as a three-electron reductant toward cycloheptatriene (CHT) to form the U(IV) complex [K[2.2.2]cryptand][U(η7-C7H7)(TDA)2(THF)] (7). The reaction of 3 with cyclooctatetraene (COT) generates a mixture of the U(III) anion [K[2.2.2]cryptand][U(TDA)4] (1-crypt) and U(COT)2, while the addition of COT to complex 2 instead yields the dinuclear U(IV)-U(IV) inverse sandwich complex [U(TDA)3]2(µ-η8:η3-C8H8) (8). Two-electron reduction of the homoleptic Th(IV) amidate complex Th(TDA)4 (4) with KC8 gives the mono(arene) complex [K[2.2.2]cryptand][Th(TDA)3(THF)] (5). The C-C bond lengths and torsion angles in the bound arene of 5 suggest a direduced arene bound to a Th(IV) metal center; this conclusion is supported by DFT calculations.


Assuntos
Complexos de Coordenação/química , Urânio/química , Complexos de Coordenação/síntese química , Teoria da Densidade Funcional , Ligantes , Modelos Químicos , Oxirredução , Tório/química
5.
Inorg Chem ; 60(13): 9912-9931, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34125521

RESUMO

We demonstrate the formation of a diverse array of organic and organometallic products containing newly formed C-C bonds via successive methyl transfers from di-, tri-, and tetramethyl Ta(V) precursors to unsaturated small molecule substrates under mild conditions. The reactions of Ta(V) methyl complexes 1-X [H2B(MesIm)2]TaMe3X (X = Me, Cl; Im = imidazole, Mes = 2,4,6-trimethylphenyl) with CO led to oxo enolate Ta(V) products, in which the enolate ligands were constructed from Ta-Me groups and two equivalents of CO. Similarly, the reaction of 1-Me with CNXyl yielded an imido enamine Ta(V) product. Surprisingly, 1-Cl reacted with CNXyl (1 equiv) at the borate backbone of the [H2B(MesIm)2] ligand with concomitant methyl transfer from the metal center to form a new, dianionic scorpionate ligand that supported a Ta(V) dimethyl chloro complex (6). Treatment of 1-Cl with further CNXyl led to an azaallyl scorpionate complex, and an imido isocyanide scorpionate complex, along with propene and xylyl ketenimine. Complex 6 reacted with CO to yield a pinacol scorpionate complex 10-a new reaction pathway in early transition metal chemistry. Mechanistic studies revealed that this proceeded via migratory insertion of CO into a Ta-Me group, followed by methyl transfer to form an η2-acetone intermediate. Elimination of acetone furnished a CO-stabilized Ta(III) intermediate capable of rebinding and subsequently coupling two equivalents of CO-derived acetone to form the pinacol ligand in 10.

6.
Inorg Chem ; 60(9): 6672-6679, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33844509

RESUMO

Uranium nitride complexes are attractive targets for chemists as molecular models for the bonding, reactivity, and magnetic properties of next-generation nuclear fuels, but these molecules are uncommon and can be difficult to isolate due to their high reactivity. Here, we describe the synthesis of three new multinuclear uranium nitride complexes, [U(BCMA)2]2(µ-N)(µ-κ1:κ1-BCMA) (7), [(U(BIMA)2)2(µ-N)(µ-NiPr)(K2(µ-η3:η3-CH2CHNiPr)]2 (8), and [U(BIMA)2]2(µ-N)(µ-κ1:κ1-BIMA) (9) (BCMA = N,N-bis(cyclohexyl)methylamidinate, BIMA = N,N-bis(iso-propyl)methylamidinate), from U(III) and U(IV) amidinate precursors. By varying the amidinate ligand substituents and azide source, we were able to influence the composition and size of these nitride complexes. 15N isotopic labeling experiments confirmed the bridging nitride moieties in 7-9 were formed via two-electron reduction of azide. The tetra-uranium cluster 8 was isolated in 99% yield via reductive cleavage of the amidinate ligands; this unusual molecule contains nitrogen-based ligands with formal 1-, 2-, and 3- charges. Additionally, chemical oxidation of the U(IV) precursor U(N3)(BCMA)3 yielded the cationic U(V) species [U(N3)(BCMA)3][OTf]. Magnetic susceptibility measurements confirmed a U(IV) oxidation state for the uranium centers in the three nitride-bridged complexes and provided a comparison of magnetic behavior in the structurally related U(III)-U(IV)-U(V) series U(BCMA)3, U(N3)(BCMA)3, and [U(N3)(BCMA)3][OTf]. At 240 K, the magnetic moments in this series decreased with increasing oxidation state, i.e., U(III) > U(IV) > U(V); this trend follows the decreasing number of 5f valence electrons along this series.

7.
Chem Commun (Camb) ; 57(40): 4954-4957, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33876158

RESUMO

We report the synthesis of four homoleptic thorium(iv) amidate complexes as single-source molecular precursors for thorium dioxide. Each can be sublimed at atmospheric pressure, with the substituents on the amidate ligands significantly impacting their volatility and thermal stability. These complexes decompose via alkene elimination to give ThO2 without need for a secondary oxygen source. ThO2 samples formed from pyrolysis of C-alkyl amidates were found to have higher purity and crystallinity than ThO2 samples formed from C-aryl amidates.

8.
Inorg Chem ; 59(23): 17259-17267, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33226227

RESUMO

A lithiated m-terphenyl ligand bearing fluorine atoms at the ortho positions of the flanking aryl rings was synthesized and characterized using single crystal X-ray diffraction, variable-temperature multinuclear NMR spectroscopy, and computational methods. Changes in 1JC,F on coordination to lithium as a spectroscopic observable parametrizing the strength of the C-F···Li interaction are described, and a general, qualitative relationship between C-F bond lengths, Δ1JC,F values, and the extent of C-F bond activation as a result of Lewis acid coordination is proposed.

9.
Dalton Trans ; 49(43): 15124-15138, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33043917

RESUMO

This Perspective provides a detailed overview of the chemistry of low-valent (di- and trivalent) uranium. The reactivity of uranium(ii) and uranium(iii) complexes is discussed both to illustrate the general types of reactions that might be expected and to highlight the many unusual modes of reactivity observed with this element. A particular emphasis is given to redox reactions with uranium(iii) species, including reduction of small molecules, multi-electron reductions involving redox-active ligands, and formation of uranium-ligand multiple bonds. In addition, redox-neutral adduct formation with uranium(iii) complexes as well as the current state of the young field of uranium(ii) redox chemistry are also covered. Synthetic protocols to prepare a wide range of low-valent compounds are presented.

10.
Chem Sci ; 11(26): 6709-6716, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32953032

RESUMO

A new, air-stable, permanently porous uranium(iv) metal-organic framework U(bdc)2 (1, bdc2- = 1,4-benzenedicarboxylate) was synthesized and its H2 and CH4 adsorption properties were investigated. Low temperature adsorption isotherms confirm strong adsorption of both gases in the framework at low pressures. In situ gas-dosed neutron diffraction experiments with different D2 loadings revealed a rare example of cooperative framework contraction (ΔV = -7.8%), triggered by D2 adsorption at low pressures. This deformation creates two optimized binding pockets for hydrogen (Q st = -8.6 kJ mol-1) per pore, in agreement with H2 adsorption data. Analogous experiments with CD4 (Q st = -24.8 kJ mol-1) and N,N-dimethylformamide as guests revealed that the binding pockets in 1 adjust by selective framework contractions that are unique for each adsorbent, augmenting individual host-guest interactions. Our results suggest that the strategic combination of binding pockets and structural flexibility in metal-organic frameworks holds great potential for the development of new adsorbents with an enhanced substrate affinity.

11.
Dalton Trans ; 49(34): 11971-11977, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32812574

RESUMO

Reaction of the uranium(iii) metallocenium salt [(CpiPr4)2U][B(C6F5)4] with tert-butyl isocyanide (tBuNC) yielded the dicationic uranium(iv) complex [(CpiPr4)2U(CNtBu)4][B(C6F5)4]2 (1), which displays a linear metallocene geometry. Use of crude mixtures of [(CpiPr4)2U][B(C6F5)4], which contain a soluble source of iodide, led instead to isolation of the monocationic uranium(iv) iodide complex [(CpiPr4)2U(I)(CNtBu)2][B(C6F5)4] (2). Adduct formation with no change in oxidation state was observed upon addition of tBuNC to the neutral uranium(iii) species (CpiPr4)2UI, resulting in isolation of (CpiPr4)2U(I)(CNtBu) (3). X-ray crystallographic and IR spectroscopic studies both showed effects ascribed to the presence of multiple strongly donating isocyanide ligands in 1.

12.
Dalton Trans ; 49(23): 7938-7944, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32495782

RESUMO

We describe the functionalisation of the previously reported uranium(iii) ß-diketiminate complex (BDI)UI2(THF)2 (1) with one and two equivalents of a sterically demanding 2,6-diisopropylphenolate ligand (ODipp) leading to the formation of two heteroleptic complexes: [(BDI)UI(ODipp)]2 (2) and (BDI)U(ODipp)2 (3). The latter is a rare example of a tetrahedral uranium(iii) complex, and it shows single-molecule magnet behaviour.

13.
Inorg Chem ; 59(12): 8580-8588, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32463677

RESUMO

Uranium(IV) metallocene complexes (CpiPr4)2U(N3)2 (1-N3), (CpiPr)2U(NCO)2 (1-NCO), and (CpiPr4)2U(OTf)2 (1-OTf) containing the bulky CpiPr4 ligand (CpiPr4 = tetra(isopropyl)cyclopentadienyl) were prepared directly from reactions between (CpiPr4)2UI2 or (CpiPr4)2UI and corresponding pseudohalide salts. The mixed-ligand complex (CpiPr4)2U(N3)(OTf) (1-N3-OTf) was isolated after heating a 1:1 mixture of 1-N3 and 1-OTf. The coordination of 1 equiv B(C6F5)3 to 1-N3 produced the borane-capped azide (CpiPr4)2U(N3)[(µ-η1:η1-N3)B(C6F5)3] (2-N3), while the reaction of 1 equiv B(C6F5)3 with 1-NCO yielded (CpiPr4)2U(NCO)[(µ-η1:η1-OCN)B(C6F5)3] (2-NCO) in which the borane-capped cyanate ligand had rearranged to become O-bound to uranium. The reaction of (CpiPr4)2UI and NaOCN led to the isolation of the uranium(III) cyanate-bridged "molecular square" [(CpiPr4)2U(µ-η1:η1-OCN)]4 (3-OCN). Cyclic voltammetry and UV-vis spectroscopy revealed small differences in the electronic properties between azide and isocyanate complexes, while X-ray crystallography showed nearly identical solid-state structures, with the most notable difference being the geometry of borane coordination to the azide in 2-N3 versus the cyanate in 2-NCO. Reactivity studies comparing 3-OCN to the azide analogue [(CpiPr4)2U(µ-η1:η1-N3)]4 (3-N3) demonstrated significant differences in the chemistry of cyanates and azides with trivalent uranium. A computational analysis of 1-NCO, 1-N3, 2-NCO, and 2-N3 has provided a basis for understanding the energetic preference for specific linkage isomers and the effect of the B(C6F5)3 coordination on the bonding between uranium, azide, and isocyanate ligands.

14.
Chem Commun (Camb) ; 56(33): 4535-4538, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32207484

RESUMO

Reaction of (CpiPr4)2UI with NaN3 resulted in formation of tetrameric uranium(iii) azide-bridged 'molecular square' [(CpiPr4)2U(µ-η1:η1-N3)]4 (1). Addition of B(C6F5)3 to 1 induced loss of N2 at room temperature, yielding the uranium(v) borane-capped nitrido (CpiPr4)2U(µ-N)B(C6F5)3 (2).

15.
Chemistry ; 26(11): 2360-2364, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31950554

RESUMO

While carbene complexes of uranium have been known for over a decade, there are no reported examples of complexes between an actinide and a "heavy carbene." Herein, we report the syntheses and structures of the first uranium-heavy tetrylene complexes: (CpSiMe3 )3 U-Si[PhC(NR)2 ]R' (R=tBu, R'=NMe2 1; R=iPr, R'=PhC(NiPr)2 2). Complex 1 features a kinetically robust uranium-silicon bonding interaction, while the uranium-silicon bond in 2 is easily disrupted thermally or by competing ligands in solution. Calculations reveal polarized σ bonds, but depending on the substituents at silicon a substantial π-bonding interaction is also present. The complexes possess relatively high bond orders which suggests primarily covalent bonding between uranium and silicon. These results comprise a new frontier in actinide-heavy main-group bonding.

16.
Inorg Chem ; 58(24): 16629-16641, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31769982

RESUMO

Addition of the potassium salt of the bulky tetra(isopropyl)cyclopentadienyl (CpiPr4) ligand to UI3(1,4-dioxane)1.5 results in the formation of the bent metallocene uranium(III) complex (CpiPr4)2UI (1), which is then used to obtain the uranium(IV) and uranium(III) dihalides (CpiPr4)2UIVX2 (2-X) and [cation][(CpiPr4)2UIIIX2] (3-X, [cation]+ = [Cp*2Co]+, [Et4N]+, or [Me4N]+) as mononuclear, donor-free complexes, for X- = F-, Cl-, Br-, and I-. Interestingly, reaction of 1 with chloride and cyanide salts of alkali metal ions leads to isolation of the chloride- and cyanide-bridged coordination solids [(CpiPr4)2U(µ-Cl)2Cs]n (4-Cl) and [(CpiPr4)2U(µ-CN)2Na(OEt2)2]n (4-CN). Abstraction of the iodide ligand from 1 further enables isolation of the "base-free" metallocenium cation salt [(CpiPr4)2U][B(C6F5)4] (5) and its DME adduct [(CpiPr4)2U(DME)][B(C6F5)4] (5-DME). Solid-state structures of all of the compounds, determined by X-ray crystallography, facilitate a detailed analysis of the effect of changing oxidation state or halide ligand on the molecular structure. NMR spectroscopy, X-ray crystallography, cyclic voltammetry, and UV-visible spectroscopy studies of 2-X and 3-X further reveal that the difluoride species in both series exhibit properties that differ significantly from trends observed among the other dihalides, such as a substantial negative shift in the potential of the [(CpiPr4)2UX2] uranium(III/IV) redox couple. Magnetic characterization of 1 and 5 reveals that both compounds exhibit slow magnetic relaxation of molecular origin under applied magnetic fields; this process is dominated by a Raman relaxation mechanism.

17.
J Am Chem Soc ; 141(44): 17867-17874, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31609114

RESUMO

Here we report the first series of in-plane thorium(IV), uranium(IV), and neptunium(IV) expanded porphyrin complexes. These actinide (An) complexes were synthesized using a hexa-aza porphyrin analogue, termed dipyriamethyrin, and the nonaqueous An(IV) precursors, ThCl4(DME)2, UCl4, and NpCl4(DME)2. The molecular and electronic structures of the ligand, each An(IV) complex, and a corresponding uranyl(VI) complex were characterized using nuclear magnetic resonance (NMR) and UV-vis spectroscopies as well as single-crystal X-ray diffraction analysis. Computational analyses of these complexes, coupled to their structural features, provide support for the conclusion that a greater degree of covalency in the ligand-cation orbital interactions arises as the early actinide series is traversed from Th(IV) to U(IV) and Np(IV). The axial ligands in the present An(IV) complexes proved labile, allowing for the electronic features of these complexes to be further modified.

18.
J Am Chem Soc ; 141(13): 5144-5148, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30892880

RESUMO

Salt metathesis between the anionic rhenium(I) compound, Na[Re(η5-Cp)(BDI)] (BDI = N, N'-bis(2,6-diisopropylphenyl)-3,5-dimethyl-ß-diketiminate), and the uranium(III) salt, UI3(1,4-dioxane)1.5, generated the triple inverse sandwich complex, U[(µ-η5:η5-Cp)Re(BDI)]3, which was isolated and structurally characterized as the Lewis base adducts, (L)U[(µ-η5:η5-Cp)Re(BDI)]3 (1·L, L = THF, 1,4-dioxane, DMAP). The assignment as one uranium(III) and three rhenium(I) centers was supported by X-ray crystallography, NMR and EPR spectroscopies, and computational studies. An unusual shortening of the rhenium-Cp bond distances in 1·L relative to Na[Re(η5-Cp)(BDI)] was observed in the solid-state and reproduced in calculated structures of 1·THF and the anionic fragment, [Re(η5-Cp)(BDI)]-. Calculations suggest that the electropositive uranium center pulls electron density away from the electron-rich rhenium centers, reducing electron-electron repulsions in the rhenium-Cp moieties and thereby strengthening those interactions, while also making uranium-Cp bonding more favorable.


Assuntos
Compostos Organometálicos/síntese química , Rênio/química , Urânio/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/química
19.
Dalton Trans ; 47(1): 96-104, 2018 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-29177271

RESUMO

Straightforward syntheses are provided for the m-terphenyl dithiocarboxylic acid 2,6-(C6H4-4-tBu)2C6H3CS2H (TerphCS2H, 2) and its lithium and potassium salts, TerphCS2Li(Et2O)2 and TerphCS2K (1·Et2O and 4, respectively). These compounds can be isolated in good yields on multi-gram scales starting from Terph-I without isolating intermediates. Salt metathesis and protonolysis reactions provided access to the homoleptic actinide(iv) complexes (TerphCS2)4An (An = Th (5) and U (6)). Electrochemical and reactivity studies revealed that the dithiocarboxylate ligand is incompatible with U(iii). The homoleptic lanthanum(iii) complex (TerphCS2)3La and its η6-toluene adduct (7 and 7·tol, respectively) were also structurally characterized. Binding of toluene to 7 was shown to displace intramolecular La-Carene close contacts that are facilitated by a distortion from the usual geometry of bound dithiocarboxylate ligands.

20.
Proc Natl Acad Sci U S A ; 113(52): 14887-14892, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27956636

RESUMO

Rare earth (RE) metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare REs. To incentivize recycling, there is a clear need for the development of simple methods for targeted separations of mixtures of RE metal salts. Metal complexes of a tripodal hydroxylaminato ligand, TriNOx3-, featured a size-sensitive aperture formed of its three η2-(N,O) ligand arms. Exposure of cations in the aperture induced a self-associative equilibrium comprising RE(TriNOx)THF and [RE(TriNOx)]2 species. Differences in the equilibrium constants Kdimer for early and late metals enabled simple separations through leaching. Separations were performed on RE1/RE2 mixtures, where RE1 = La-Sm and RE2 = Gd-Lu, with emphasis on Eu/Y separations for potential applications in the recycling of phosphor waste from compact fluorescent light bulbs. Using the leaching method, separations factors approaching 2,000 were obtained for early-late RE combinations. Following solvent optimization, >95% pure samples of Eu were obtained with a 67% recovery for the technologically relevant Eu/Y separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...