Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 47(9): 3837-42, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10552731

RESUMO

Plant-derived allelochemicals such as those produced by glucosinolate hydrolysis in Brassica napus, or rapeseed, are viable alternatives to synthetic compounds for the control of soil-borne plant pests. However, allelochemical production and residence times in field soils have not been determined. Soil samples were taken at 0-7.5 and 7.5-15 cm during a period of 3 weeks following plow-down of two winter rapeseed cultivars (Humus and Dwarf Essex). Soil samples were extracted with dichloromethane and analyzed using gas chromatography. Nine glucosinolate degradation products were identified-five isothiocyanates, three nitriles, and one oxazolidinethione. Maximum concentrations were observed 30 h after plow-down. Compounds derived from 2-phenylethyl glucosinolate, the principal glucosinolate in rapeseed roots, dominated the profile of degradation products. Shoot glucosinolates left few traces. This indicates that rapeseed roots may be a more important source of toxic fumigants than above-ground parts of the plant.


Assuntos
Brassica , Isotiocianatos/análise , Esterco , Solo/análise , Tioglucosídeos/análise , Cromatografia Gasosa
2.
Plant Dis ; 81(3): 288-292, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30861772

RESUMO

Seed meal from Brassica napus (rapeseed) produced volatile fungitoxic compounds potentially of value in the control of Aphanomyces root rot of pea. Hyphal growth, germination of encysted zoospores, and oospore survival and inoculum potential, were determined in the presence of volatiles produced from B. napus seed meal. Volatile compounds from B. napus meal completely suppressed mycelial growth and germination of encysted zoospores on agar. In growth chamber bioassays, pea (Pisum sativum) seed inoculated with zoospore suspensions and incubated 24 h in the presence of volatiles from rapeseed meal had 50% lower root rot disease severity than in the absence of meal. Volatile compounds passing through soil also significantly decreased survival and inoculum potential of oospores. Gas chromatographic analysis of rapeseed tissues and the volatile compounds evolved from tissues showed that substrate glucosinolates were hydrolyzed enzymatically to produce mainly isothiocyanates. Non-autoclaved rapeseed meal produced significantly higher levels of volatile compounds than did autoclaved meal. Also, volatile compounds produced from autoclaved meal were dominated by nitriles, whereas isothiocyanates were more common volatile products from non-autoclaved meal. Our results indicate that B. napus allelochemicals responsible for toxic effects toward A. euteiches f. sp. pisi are enzymatic hydrolysis products of glucosinolates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA