Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 344: 122558, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471621

RESUMO

AIMS: Colorectal cancer is the third most frequent type of cancer and the second leading cause of cancer-related deaths worldwide. The majority of cases are diagnosed at a later stage, leading to the need for more aggressive treatments such as chemotherapy. 5-Fluorouracil (5-FU), known for its high cytotoxic properties has emerged as a chemotherapeutic agent. However, it presents several drawbacks such as lack of specificity and short half-life. To reduce these drawbacks, several strategies have been designed namely chemical modification or association to drug delivery systems. MATERIALS AND METHODS: Current research was focused on the design, physicochemical characterization and in vitro evaluation of a lipid-based system loaded with 5-FU. Furthermore, aiming to maximize preferential targeting and release at tumour sites, a hybrid lipid-based system, combining both therapeutic and magnetic properties was developed and validated. For this purpose, liposomes co-loaded with 5-FU and iron oxide (II, III) nanoparticles were accomplished. KEY FINDINGS: The characterization of the developed nanoformulation was performed in terms of incorporation parameters, mean size and surface charge. In vitro studies assessed in a murine colon cancer cell line confirmed that 5-FU antiproliferative activity was preserved after incorporation in liposomes. In same model, iron oxide (II, III) nanoparticles did not exhibit cytotoxic properties. Additionally, the presence of these nanoparticles was shown to confer magnetic properties to the liposomes, allowing them to respond to external magnetic fields. SIGNIFICANCE: Overall, a lipid nanosystem loading a chemotherapeutic agent displaying magnetic characteristics was successfully designed and physicochemically characterized, for further in vivo applications.


Assuntos
Antineoplásicos , Compostos Férricos , Nanopartículas , Animais , Camundongos , Fluoruracila , Lipossomos , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Fenômenos Magnéticos , Lipídeos , Portadores de Fármacos/química , Linhagem Celular Tumoral
2.
Biomimetics (Basel) ; 9(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38534828

RESUMO

Open-cell foams based on hydroxyapatite (HAp) can mimic the extracellular matrix (ECM) to better replace damaged hard tissues and assist in their regeneration processes. Aerogels of HAp nanowires (NW) with barium titanate (BT) particles were produced and characterized regarding their physical and chemical properties, bioactivity, and in vitro cytotoxicity. Considering the role of piezoelectricity (mainly due to collagen) and surface charges in bone remodeling, all BT particles, of size 280 nm and 2 and 3 µm, contained BaTiO3 in their piezoelectric tetragonal phase. The synthesized nanowires were verified to be AB-type carbonated hydroxyapatite. The aerogels showed high porosity and relatively homogeneous distribution of the BT particles. Barium titanate proved to be non-cytotoxic while all the aerogels produced were cytotoxic for an extract concentration of 1 mg/mL but became non-cytotoxic at concentrations of 0.5 mg/mL and below. It is possible that these results were affected by the higher surface area and quicker dissolution rate of the aerogels. In the bioactivity assays, SEM/EDS, it was not easy to differentiate between the apatite deposition and the surface of the HAp wires. However, a quantitative EDS analysis shows a possible CaP deposition/dissolution cycle taking place.

3.
Polymers (Basel) ; 15(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37836053

RESUMO

Therapeutic solutions for injuries in the peripheral nervous system are limited and not existing in the case of the central nervous system. The electrical stimulation of cells through a cell-supporting conductive scaffold may contribute to new therapeutic solutions for nerve regeneration. In this work, biocompatible Polylactic acid (PLA) fibrous scaffolds incorporating Fe(III)Tosylate (FeTos) were produced by electrospinning a mixture of PLA/FeTos solutions towards a rotating cylinder, inducing fiber alignment. Fibers were coated with the conductive polymer Poly(3,4 ethylenedioxythiophene) (PEDOT) formed by vapor-phase polymerization of EDOT at 70 °C for 2 h. Different solvents (ETH, DMF and THF) were used as FeTos solvents to investigate the impact on the scaffold's conductivity. Scaffold conductivity was estimated to be as high as 1.50 × 10-1 S/cm when FeTos was dissolved in DMF. In vitro tests were performed to evaluate possible scaffold cytotoxicity, following ISO 10993-5, revealing no cytotoxic effects. Differentiation and growth of cells from the neural cell line SH-SY5Y seeded on the scaffolds were also assessed, with neuritic extensions observed in cells differentiated in neurons with retinoic acid. These extensions tended to follow the preferential alignment of the scaffold fibers.

4.
Pharmaceutics ; 15(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37765284

RESUMO

Among central nervous system (CNS) disorders, Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and a major cause of dementia worldwide. The yet unclear etiology of AD and the high impenetrability of the blood-brain barrier (BBB) limit most therapeutic compounds from reaching the brain. Although many efforts have been made to effectively deliver drugs to the CNS, both invasive and noninvasive strategies employed often come with associated side effects. Nanotechnology-based approaches such as nanoparticles (NPs), which can act as multifunctional platforms in a single system, emerged as a potential solution for current AD theranostics. Among these, magnetic nanoparticles (MNPs) are an appealing strategy since they can act as contrast agents for magnetic resonance imaging (MRI) and as drug delivery systems. The nanocarrier functionalization with specific moieties, such as peptides, proteins, and antibodies, influences the particles' interaction with brain endothelial cell constituents, facilitating transport across the BBB and possibly increasing brain penetration. In this review, we introduce MNP-based systems, combining surface modifications with the particles' physical properties for molecular imaging, as a novel neuro-targeted strategy for AD theranostics. The main goal is to highlight the potential of multifunctional MNPs and their advances as a dual nanotechnological diagnosis and treatment platform for neurodegenerative disorders.

5.
Nanomaterials (Basel) ; 13(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36985952

RESUMO

Atmospheric plasma spray (APS) remains the only certified industrial process to produce hydroxyapatite (Hap) coatings on orthopaedic and dental implants intended for commercialization. Despite the established clinical success of Hap-coated implants, such as hip and knee arthroplasties, a concern is being raised regarding the failure and revision rates in younger patients, which are increasing rapidly worldwide. The lifetime risk of replacement for patients in the 50-60 age interval is about 35%, which is significantly higher than 5% for patients aged 70 or older. Improved implants targeted at younger patients are a necessity that experts have been alerted to. One approach is to enhance their bioactivity. For this purpose, the method with the most outstanding biological results is the electrical polarization of Hap, which remarkably accelerates implant osteointegration. There is, however, the technical challenge of charging the coatings. Although this is straightforward on bulk samples with planar faces, it is not easy on coatings, and there are several problems regarding the application of electrodes. To the best of our knowledge, this study demonstrates, for the first time, the electrical charging of APS Hap coatings using a non-contact, electrode-free method: corona charging. Bioactivity enhancement is observed, establishing the promising potential of corona charging in orthopedics and dental implantology. It is found that the coatings can store charge at the surface and bulk levels up to high surface potentials (>1000 V). The biological in vitro results show higher Ca2+ and P5+ intakes in charged coatings compared to non-charged coatings. Moreover, a higher osteoblastic cellular proliferation is promoted in the charged coatings, indicating the promising potential of corona-charged coatings when applied in orthopedics and dental implantology.

6.
Materials (Basel) ; 16(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36769963

RESUMO

Polymeric membranes are widely used in guided bone regeneration (GBR), particularly in dentistry. In addition, bioactive glasses can be added to the polymers in order to develop a matrix that is osteoconductive and osteoinductive, increasing cell adhesion and proliferation. The bioactive glasses allow the insertion into its network of therapeutic ions in order to add specific biological properties. The addition of zinc into bioactive glasses can promote antibacterial activity and induce the differentiation and proliferation of the bone cells. In this study, bioactive glasses containing zinc (0.25, 0.5, 1 and 2 mol%) were developed and structurally and biologically characterized. The biological results show that the Zn-containing bioactive glasses do not present significant antibacterial activity, but the addition of zinc at the highest concentration does not compromise the bioactivity and promotes the viability of Saos-2 cells. The cell culture assays in the membranes (PCL, PCL:BG and PCL:BGZn2) showed that zinc addition promotes cell viability and an increase in alkaline phosphatase (ALP) production.

7.
Nanomaterials (Basel) ; 12(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36558332

RESUMO

The main reason for the increased use of dental implants in clinical practice is associated with aesthetic parameters. Implants are also presented as the only technique that conserves and stimulates natural bone. However, there are several problems associated with infections, such as peri-implantitis. This disease reveals a progressive inflammatory action that affects the hard and soft tissues surrounding the implant, leading to implant loss. To prevent the onset of this disease, coating the implant with bioactive glasses has been suggested. In addition to its intrinsic function of promoting bone regeneration, it is also possible to insert therapeutic ions, such as cerium. Cerium has several advantages when the aim is to improve osseointegration and prevent infectious problems with dental implant placement. It promotes increased growth and the differentiation of osteoblasts, improves the mechanical properties of bone, and prevents bacterial adhesion and proliferation that may occur on the implant surface. This antibacterial effect is due to its ability to disrupt the cell wall and membrane of bacteria, thus interfering with vital metabolic functions such as respiration. In addition, its antioxidant effect reverses oxidative stress after implantation in bone. In this work, Bioglass 45S5 with CeO2 with different percentages (0.25, 0.5, 1, and 2 mol%) was developed by the melt-quenching method. The materials were analyzed in terms of morphological, structural, and biological (cytotoxicity, bioactivity, and antibacterial activity) properties. The addition of cerium did not promote structural changes to the bioactive glass, which shows no cytotoxicity for the Saos-2 cell line up to 25 mg/mL of extract concentration for all cerium contents. For the maximum cerium concentration (2 mol%) the bioactive glass shows an evident inhibitory effect for Escherichia coli and Streptococcus mutans bacteria. Furthermore, all samples showed the beginning of the deposition of a CaP-rich layer on the surface of the material after 24 h.

8.
Nanomaterials (Basel) ; 12(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234440

RESUMO

In recent decades, new and improved materials have been developed with a significant interest in three-dimensional (3D) scaffolds that can cope with the diverse needs of the expanding biomedical field and promote the required biological response in multiple applications. Due to their biocompatibility, ability to encapsulate and deliver drugs, and capacity to mimic the extracellular matrix (ECM), typical hydrogels have been extensively investigated in the biomedical and biotechnological fields. The major limitations of hydrogels include poor mechanical integrity and limited cell interaction, restricting their broad applicability. To overcome these limitations, an emerging approach, aimed at the generation of hybrid materials with synergistic effects, is focused on incorporating nanoparticles (NPs) within polymeric gels to achieve nanocomposites with tailored functionality and improved properties. This review focuses on the unique contributions of clay nanoparticles, regarding the recent developments of clay-based nanocomposite hydrogels, with an emphasis on biomedical applications.

9.
Mater Sci Eng C Mater Biol Appl ; 103: 109819, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349414

RESUMO

The composition and architecture of a scaffold determine its supportive role in tissue regeneration. In this work, we demonstrate the feasibility of obtaining a porous electrospun fibrous structure from biodegradable polyurethanes (Pus) synthesized using polycaprolactone-diol as soft segment and, as chain extenders, chitosan (CS) and/or dimethylol propionic acid. Fourier transform infrared spectroscopy and proton nuclear magnetic resonance confirmed the syntheses. Fibre mats' properties were analysed and compared with those of solvent cast films. Scanning electron microscopy images of the electrospun scaffolds revealed fibres with diameters around 1 µm. From tensile tests, we found that Young's modulus increases with CS content and is higher for films (2.5 MPa to 6.5 MPa) than for the corresponding fibre mats (0.8 MPa to 3.2 MPa). The use of CS as the only chain extender improves recovery ratio and resilience. From X-ray diffraction, a higher crystalline degree was identified in fibre mats than in the corresponding films. Films' wettability was enhanced by the presence of CS as shown by the decrease of water contact angle. X-ray photoelectron spectroscopy revealed that while ester groups are predominant at the films' surface, ester and urethanes are present in similar concentrations at fibres' surface, favouring the interaction with water molecules. Both films and fibres undergo hydrolytic degradation. In vitro evaluation was performed with human dermal fibroblasts. No PU sample revealed cytotoxicity. Cells adhered to fibre mats better than to films and proliferation was observed only for samples of CS-containing PUs. Results suggest that electrospun fibres of CS-based polyurethanes are good candidate scaffolds for soft tissue engineering.


Assuntos
Quitosana/química , Fibroblastos/citologia , Poliuretanos/química , Alicerces Teciduais/química , Ureia/análogos & derivados , Ureia/química , Varredura Diferencial de Calorimetria , Adesão Celular , Proliferação de Células , Dimetilformamida/química , Furanos/química , Humanos , Hidroxiácidos/química , Teste de Materiais , Espectroscopia Fotoeletrônica , Poliuretanos/síntese química , Propionatos/química , Solventes/química , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Difração de Raios X
10.
Carbohydr Polym ; 155: 372-381, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27702524

RESUMO

Inspired by chitin based hierarchical structures observed in arthropods exoskeleton, this work reports the capturing of chitin nanowhiskers' chiral nematic order into a chitosan matrix. For this purpose, highly crystalline chitin nanowhiskers (CTNW) with spindle-like morphology and average aspect ratio of 24.9 were produced by acid hydrolysis of chitin. CTNW were uniformly dispersed at different concentrations in aqueous suspensions. The suspensions liquid crystalline phase domain was determined by rheological measurements and polarized optical microscopy (POM). Chitosan (CS) was added to the CTNW isotropic, biphasic and anisotropic suspensions and the solvent was evaporated to allow films formation. The Films' morphologies as well as the mechanical properties were explored. A correlation between experimental results and a theoretical model, for layered matrix' structures with fibers acting as a reinforcement agent, was established. The results evidence the existence of two different layered structures, one formed by chitosan layers induced by the presence of chitin and another formed by chitin nanowhiskers layers. By playing on the ratio chitin/chitosan one layered structure or the other can be obtained allowing the tunning of materials' mechanical properties.

11.
Nanotechnology ; 26(42): 425704, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26421876

RESUMO

Iron oxide nanoparticles (NPs) have been extensively studied in the last few decades for several biomedical applications such as magnetic resonance imaging, magnetic drug delivery and hyperthermia. Hyperthermia is a technique used for cancer treatment which consists in inducing a temperature of about 41-45 °C in cancerous cells through magnetic NPs and an external magnetic field. Chemical precipitation was used to produce iron oxide NPs 9 nm in size coated with oleic acid and trisodium citrate. The influence of both stabilizers on the heating ability and in vitro cytotoxicity of the produced iron oxide NPs was assessed. Physicochemical characterization of the samples confirmed that the used surfactants do not change the particles' average size and that the presence of the surfactants has a strong effect on both the magnetic properties and the heating ability. The heating ability of Fe3O4 NPs shows a proportional increase with the increase of iron concentration, although when coated with trisodium citrate or oleic acid the heating ability decreases. Cytotoxicity assays demonstrated that both pristine and trisodium citrate Fe3O4 samples do not reduce cell viability. However, oleic acid Fe3O4 strongly reduces cell viability, more drastically in the SaOs-2 cell line. The produced iron oxide NPs are suitable for cancer hyperthermia treatment and the use of a surfactant brings great advantages concerning the dispersion of NPs, also allowing better control of the hyperthermia temperature.


Assuntos
Coloides/química , Nanopartículas de Magnetita/química , Tensoativos/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Coloides/toxicidade , Temperatura Alta , Nanopartículas de Magnetita/toxicidade , Células Vero
12.
J Hazard Mater ; 299: 298-305, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26142159

RESUMO

The use of electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc nanoparticles was studied to prepare antimicrobial mats using silver and copper nitrates and zinc acetate as precursors. Silver became reduced during electrospinning and formed nanoparticles of several tens of nanometers. Silver nanoparticles and the insoluble forms of copper and zinc were dispersed using low molecular weight PVP as capping agent. High molecular weight PVP formed uniform fibers with a narrow distribution of diameters around 500 nm. The fibers were converted into an insoluble network using ultraviolet irradiation crosslinking. The efficiency of metal-loaded mats against the bacteria Escherichia coli and Staphylococcus aureus was tested for different metal loadings by measuring the inhibition of colony forming units and the staining with fluorescent probes for metabolic viability and compromised membranes. The assays included the culture in contact with mats and the direct staining of surface attached microorganisms. The results indicated a strong inhibition for silver-loaded fibers and the absence of significant amounts of viable but non-culturable microorganisms. Copper and zinc-loaded mats also decreased the metabolic activity and cell viability, although in a lesser extent. Metal-loaded fibers allowed the slow release of the soluble forms of the three metals.


Assuntos
Anti-Infecciosos/farmacologia , Cobre/química , Nanofibras , Povidona/química , Prata/química , Zinco/química , Microscopia Eletrônica de Transmissão
13.
J Colloid Interface Sci ; 419: 46-51, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24491328

RESUMO

Iron oxide nanoparticles are having been extensively investigated for several biomedical applications such as hyperthermia and magnetic resonance imaging. However, one of the biggest problems of these nanoparticles is their aggregation. Taking this into account, in this study the influence of three different surfactants (oleic acid, sodium citrate and Triton X-100) each one with various concentrations in the colloidal solutions stability was analyzed by using a rapid and facile method, the variation in the optical absorbance along time. The synthesized nanoparticles through chemical precipitation showed an average size of 9 nm and a narrow size distribution. X-ray diffraction pattern and Fourier Transform Infrared analysis confirmed the presence of pure magnetite. SQUID measurements showed superparamagnetic properties with a blocking temperature around 155 K. In addition it was observed that neither sodium citrate nor Triton X-100 influences the magnetic properties of the nanoparticles. On the other hand, oleic acid in a concentration of 64 mM decreases the saturation magnetization from 67 to 45 emu/g. Oleic acid exhibits a good performance as stabilizer of the iron oxide nanoparticles in an aqueous solution for 24h, for concentrations that lead to the formation of the double layer.


Assuntos
Meios de Contraste/química , Compostos Férricos/química , Campos Magnéticos , Nanopartículas/química , Tensoativos/química , Coloides , Meios de Contraste/farmacologia , Compostos Férricos/farmacologia , Febre/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Tensoativos/farmacologia
14.
Recent Pat Anticancer Drug Discov ; 7(1): 64-73, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21854362

RESUMO

Cancer is one of the main causes of death in the world and its incidence increases every day. Current treatments are insufficient and present many breaches. Hyperthermia is an old concept and since early it was established as a cancer treatment option, mainly in superficial cancers. More recently the concept of intracellular hyperthermia emerged wherein magnetic particles are concentrated at the tumor site and remotely heated using an applied magnetic field to achieve hyperthermic temperatures (42-45°C). Many patents have been registered in this area since the year 2000. This review presents the most relevant information, organizing them according to the hyperthermic method used: 1) external Radio-Frequency devices; 2) hyperthermic perfusion; 3) frequency enhancers; 4) apply heating to the target site using a catheter; 5) injection of magnetic and ferroelectric particles; 6) injection of magnetic nanoparticles that may carry a pharmacological active drug. The use of magnetic nanoparticles is a very promising treatment approach since it may be used for diagnostic and treatment. An ideal magnetic nanoparticle would be able to detect and diagnose the tumor, carry a pharmacological active drug to be delivered in the tumor site, apply hyperthermia through an external magnetic field and allow treatment monitoring by magnetic resonance imaging.


Assuntos
Hipertermia Induzida/métodos , Neoplasias/terapia , Patentes como Assunto , Animais , Temperatura Alta/uso terapêutico , Humanos , Hipertermia Induzida/tendências , Campos Magnéticos , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/metabolismo
15.
Wound Repair Regen ; 17(6): 817-24, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19903303

RESUMO

Wound healing is a complex process involving an integrated response by many different cell types and growth factors in order to achieve rapid restoration of skin architecture and function. The present study evaluated the applicability of a chitosan hydrogel (CH) as a wound dressing. Scanning electron microscopy analysis was used to characterize CH morphology. Fibroblast cells isolated from rat skin were used to assess the cytotoxicity of the hydrogel. CH was able to promote cell adhesion and proliferation. Cell viability studies showed that the hydrogel and its degradation by-products are noncytotoxic. The evaluation of the applicability of CH in the treatment of dermal burns in Wistar rats was performed by induction of full-thickness transcutaneous dermal wounds. Wound healing was monitored through macroscopic and histological analysis. From macroscopic analysis, the wound beds of the animals treated with CH were considerably smaller than those of the controls. Histological analysis revealed lack of a reactive or a granulomatous inflammatory reaction in skin lesions with CH and the absence of pathological abnormalities in the organs obtained by necropsy, which supported the local and systemic histocompatibility of the biomaterial. The present results suggest that this biomaterial may aid the re-establishment of skin architecture.


Assuntos
Quitosana/toxicidade , Hidrogéis/toxicidade , Cicatrização/efeitos dos fármacos , Animais , Células Cultivadas , Quitosana/síntese química , Feminino , Fibroblastos/efeitos dos fármacos , Hidrogéis/síntese química , Ratos , Ratos Wistar , Pele/citologia , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...