Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tomography ; 9(4): 1303-1314, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37489471

RESUMO

Digital breast tomosynthesis (DBT) reconstructions introduce out-of-plane artifacts and false-tissue boundaries impacting the dense/adipose and breast outline (convex hull) segmentations. A virtual clinical trial method was proposed to segment both the breast tissues and the breast outline in DBT reconstructions. The DBT images of a representative population were simulated using three acquisition geometries: a left-right scan (conventional, I), a two-directional scan in the shape of a "T" (II), and an extra-wide range (XWR, III) left-right scan at a six-times higher dose than I. The nnU-Net was modified including two losses for segmentation: (1) tissues and (2) breast outline. The impact of loss (1) and the combination of loss (1) and (2) was evaluated using models trained with data simulating geometry I. The impact of the geometry was evaluated using the combined loss (1&2). The loss (1&2) improved the convex hull estimates, resolving 22.2% of the false classification of air voxels. Geometry II was superior to I and III, resolving 99.1% and 96.8% of the false classification of air voxels. Geometry III (Dice = (0.98, 0.94)) was superior to I (0.92, 0.78) and II (0.93, 0.74) for the tissue segmentation (adipose, dense, respectively). Thus, the loss (1&2) provided better segmentation, and geometries T and XWR improved the dense/adipose and breast outline segmentations relative to the conventional scan.


Assuntos
Artefatos , Mama , Humanos , Feminino , Mama/diagnóstico por imagem , Tecido Adiposo
2.
Artif Intell Med ; 142: 102555, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316093

RESUMO

Digital mammography is currently the most common imaging tool for breast cancer screening. Although the benefits of using digital mammography for cancer screening outweigh the risks associated with the x-ray exposure, the radiation dose must be kept as low as possible while maintaining the diagnostic utility of the generated images, thus minimizing patient risks. Many studies investigated the feasibility of dose reduction by restoring low-dose images using deep neural networks. In these cases, choosing the appropriate training database and loss function is crucial and impacts the quality of the results. In this work, we used a standard residual network (ResNet) to restore low-dose digital mammography images and evaluated the performance of several loss functions. For training purposes, we extracted 256,000 image patches from a dataset of 400 images of retrospective clinical mammography exams, where dose reduction factors of 75% and 50% were simulated to generate low and standard-dose pairs. We validated the network in a real scenario by using a physical anthropomorphic breast phantom to acquire real low-dose and standard full-dose images in a commercially available mammography system, which were then processed through our trained model. We benchmarked our results against an analytical restoration model for low-dose digital mammography. Objective assessment was performed through the signal-to-noise ratio (SNR) and the mean normalized squared error (MNSE), decomposed into residual noise and bias. Statistical tests revealed that the use of the perceptual loss (PL4) resulted in statistically significant differences when compared to all other loss functions. Additionally, images restored using the PL4 achieved the closest residual noise to the standard dose. On the other hand, perceptual loss PL3, structural similarity index (SSIM) and one of the adversarial losses achieved the lowest bias for both dose reduction factors. The source code of our deep neural network is available at https://github.com/WANG-AXIS/LdDMDenoising.


Assuntos
Mama , Mamografia , Humanos , Estudos Retrospectivos , Bases de Dados Factuais , Redes Neurais de Computação
3.
Phys Med Biol ; 65(22): 225035, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33231201

RESUMO

In this work we model the noise properties of a computed radiography (CR) mammography system by adding an extra degree of freedom to a well-established noise model, and derive a variance-stabilizing transform (VST) to convert the signal-dependent noise into approximately signal-independent. The proposed model relies on a quadratic variance function, which considers fixed-pattern (structural), quantum and electronic noise. It also accounts for the spatial-dependency of the noise by assuming a space-variant quantum coefficient. The proposed noise model was compared against two alternative models commonly found in the literature. The first alternative model ignores the spatial-variability of the quantum noise, and the second model assumes negligible structural noise. We also derive a VST to convert noisy observations contaminated by the proposed noise model into observations with approximately Gaussian noise and constant variance equals to one. Finally, we estimated a look-up table that can be used as an inverse transform in denoising applications. A phantom study was conducted to validate the noise model, VST and inverse VST. The results show that the space-variant signal-dependent quadratic noise model is appropriate to describe noise in this CR mammography system (errors< 2.0% in terms of signal-to-noise ratio). The two alternative noise models were outperformed by the proposed model (errors as high as 14.7% and 9.4%). The designed VST was able to stabilize the noise so that it has variance approximately equal to one (errors< 4.1%), while the two alternative models achieved errors as high as 26.9% and 18.0%, respectively. Finally, the proposed inverse transform was capable of returning the signal to the original signal range with virtually no bias.


Assuntos
Mamografia , Modelos Teóricos , Razão Sinal-Ruído , Algoritmos , Humanos , Distribuição Normal , Imagens de Fantasmas
4.
Med Phys ; 46(6): 2683-2689, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30972769

RESUMO

PURPOSE: To investigate the use of an affine-variance noise model, with correlated quantum noise and spatially dependent quantum gain, for the simulation of noise in virtual clinical trials (VCT) of digital breast tomosynthesis (DBT). METHODS: Two distinct technologies were considered: an amorphous-selenium (a-Se) detector with direct conversion and a thallium-doped cesium iodide (CsI(Tl)) detector with indirect conversion. A VCT framework was used to generate noise-free projections of a uniform three-dimensional simulated phantom, whose geometry and absorption match those of a polymethyl methacrylate (PMMA) uniform physical phantom. The noise model was then used to generate noisy observations from the simulated noise-free data, while two clinically available DBT units were used to acquire projections of the PMMA physical phantom. Real and simulated projections were then compared using the signal-to-noise ratio (SNR) and normalized noise power spectrum (NNPS). RESULTS: Simulated images reported errors smaller than 4.4% and 7.0% in terms of SNR and NNPS, respectively. These errors are within the expected variation between two clinical units of the same model. The errors increase to 65.8% if uncorrelated models are adopted for the simulation of systems featuring indirect detection. The assumption of spatially independent quantum gain generates errors of 11.2%. CONCLUSIONS: The investigated noise model can be used to accurately reproduce the noise found in clinical DBT. The assumption of uncorrelated noise may be adopted if the system features a direct detector with minimal pixel crosstalk.


Assuntos
Mamografia , Modelos Estatísticos , Razão Sinal-Ruído , Ensaios Clínicos como Assunto , Humanos , Interface Usuário-Computador
5.
IEEE Trans Med Imaging ; 37(8): 1857-1864, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29994062

RESUMO

In this paper, we analyze how stabilizing the variance of intensity-dependent quantum noise in digital mammograms can significantly improve the computerized detection of microcalcifications (MCs). These lesions appear on mammograms as tiny deposits of calcium smaller than 20 pixels in diameter. At this scale, high frequency image noise is dominated by quantum noise, which in raw mammograms can be described with a square-root noise model. Under this assumption, we derive an adaptive variance stabilizing transform (VST) that stabilizes the noise to unitary standard deviation in all the images. This is achieved by estimating the noise characteristics from the image at hand. We tested the adaptive VST as a preprocessing stage for four existing computerized MC detection methods on three data sets acquired with mammographic units from different manufacturers. In all the test cases considered, MC detection performance on transformed mammograms was statistically significantly higher than on unprocessed mammograms. Results were also superior in comparison with a "fixed" (nonparametric) VST previously proposed for digital mammograms.


Assuntos
Mama/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Mamografia/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Análise por Conglomerados , Feminino , Humanos
6.
IEEE Trans Med Imaging ; 36(11): 2331-2342, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28641248

RESUMO

This paper proposes a new method of simulating dose reduction in digital breast tomosynthesis, starting from a clinical image acquired with a standard radiation dose. It considers both signal-dependent quantum and signal-independent electronic noise. Furthermore, the method accounts for pixel crosstalk, which causes the noise to be frequency-dependent, thus increasing the simulation accuracy. For an objective assessment, simulated and real images were compared in terms of noise standard deviation, signal-to-noise ratio (SNR) and normalized noise power spectrum (NNPS). A two-alternative forced-choice (2-AFC) study investigated the similarity between the noise strength of low-dose simulated and real images. Six experienced medical physics specialists participated on the study, with a total of 2 160 readings. Objective assessment showed no relevant trends with the simulated noise. The relative error in the standard deviation of the simulated noise was less than 2% for every projection angle. The relative error of the SNR was less than 1.5%, and the NNPS of the simulated images had errors less than 2.5%. The 2-AFC human observer experiment yielded no statistically significant difference ( =0.84) in the perceived noise strength between simulated and real images. Furthermore, the observer study also allowed the estimation of a dose difference at which the observer perceived a just-noticeable difference (JND) in noise levels. The estimated JND value indicated that a change of 17% in the current-time product was sufficient to cause a noticeable difference in noise levels. The observed high accuracy, along with the flexible calibration, make this method an attractive tool for clinical image-based simulations of dose reduction.


Assuntos
Simulação por Computador , Mamografia/métodos , Doses de Radiação , Intensificação de Imagem Radiográfica/métodos , Algoritmos , Mama/diagnóstico por imagem , Feminino , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído
7.
Med Phys ; 43(6): 2704-2714, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27277017

RESUMO

PURPOSE: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. METHODS: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. RESULTS: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. CONCLUSIONS: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise metrics confirm that this method is capable of precisely simulating various dose reductions.


Assuntos
Algoritmos , Simulação por Computador , Mamografia/métodos , Doses de Radiação , Artefatos , Mama/efeitos da radiação , Humanos , Modelos Lineares , Mamografia/instrumentação , Modelos Anatômicos , Imagens de Fantasmas
8.
J Digit Imaging ; 26(2): 183-97, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22806627

RESUMO

A new restoration methodology is proposed to enhance mammographic images through the improvement of contrast features and the simultaneous suppression of noise. Denoising is performed in the first step using the Anscombe transformation to convert the signal-dependent quantum noise into an approximately signal-independent Gaussian additive noise. In the Anscombe domain, noise is filtered through an adaptive Wiener filter, whose parameters are obtained by considering local image statistics. In the second step, a filter based on the modulation transfer function of the imaging system in the whole radiation field is applied for image enhancement. This methodology can be used as a preprocessing module for computer-aided detection (CAD) systems to improve the performance of breast cancer screening. A preliminary assessment of the restoration algorithm was performed using synthetic images with different levels of quantum noise. Afterward, we evaluated the effect of the preprocessing on the performance of a previously developed CAD system for clustered microcalcification detection in mammographic images. The results from the synthetic images showed an increase of up to 11.5 dB (p = 0.002) in the peak signal-to-noise ratio. Moreover, the mean structural similarity index increased up to 8.3 % (p < 0.001). Regarding CAD performance, the results suggested that the preprocessing increased the detectability of microcalcifications in mammographic images without increasing the false-positive rates. Receiver operating characteristic analysis revealed an average increase of 14.1 % (p = 0.01) in overall CAD performance when restored image sets were used.


Assuntos
Artefatos , Doenças Mamárias/diagnóstico por imagem , Mamografia/métodos , Interpretação de Imagem Radiográfica Assistida por Computador , Feminino , Humanos , Mamografia/instrumentação , Imagens de Fantasmas , Curva ROC , Intensificação de Imagem Radiográfica/métodos , Sensibilidade e Especificidade , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...