Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(11): 5183-5193, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37906697

RESUMO

Chitosan (CS)-based scaffolds loaded with Pinus radiata extract bark (PE) and grape seed extract (GSE) were successfully developed for wound dressing applications. The effects of incorporating GSE and PE in CS scaffolds were investigated in relation to their physicochemical and biological properties. All scaffolds exhibited porous structures with the ability to absorb more than 70 times their weight when contacted with blood and phosphate buffer solution. The incorporation of GSE and PE into the CS scaffolds increased their blood absorption ability and degradation rates over time. All scaffolds showed a clotting ability above 95%, with their surfaces being favorable for red blood cell attachment. Both GSE and PE were released from the CS scaffolds in a sustained manner. Scaffolds loaded with GSE and PE inhibited the bacterial activity of S. aureus and E. coli by 40% and 44% after 24 h testing. In vitro cell viability studies demonstrated that all scaffolds were nontoxic to HaCaT cells. Importantly, the addition of GSE and PE further increased cell viability compared to that of the CS scaffold. This study provides a new synthesis method to immobilize GSE and PE on CS scaffolds, enabling the formation of novel material platforms with a high potential for wound dressing applications.


Assuntos
Quitosana , Quitosana/química , Staphylococcus aureus , Escherichia coli , Alicerces Teciduais/química , Bandagens , Antibacterianos/farmacologia , Antibacterianos/química
2.
Pharmaceutics ; 14(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36145521

RESUMO

Using in vitro and in vivo models, this study investigated the hemostatic potential to control bleeding of both unloaded gelatin-graphene oxide aerogels and the same loaded with proanthocyanidins (PAs) from Vitis vinifera grape skin extract. Our results showed that the physicochemical and mechanical properties of the aerogels were not affected by PA inclusion. In vitro studies showed that PA-loaded aerogels increased the surface charge, blood absorption capacity and cell viability compared to unloaded ones. These results are relevant for hemostasis, since a greater accumulation of blood cells on the aerogel surface favors aerogel-blood cell interactions. Although PAs alone were not able to promote hemostasis through extrinsic and intrinsic pathways, their incorporation into aerogels did not affect the in vitro hemostatic activity of these composites. In vivo studies demonstrated that both aerogels had significantly increased hemostatic performance compared to SpongostanTM and gauze sponge, and no noticeable effects of PA alone on the in vivo hemostatic performance of aerogels were observed; this may have been related to its poor diffusion from the aerogel matrix. Thus, PAs have a positive effect on hemostasis when incorporated into aerogels, although further studies should be conducted to elucidate the role of this extract in the different stages of hemostasis.

3.
Biomater Adv ; 139: 213007, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35891602

RESUMO

In this study, graphene oxide (GO)-based aerogels cross-linked with chitosan (CS), gelatin (GEL), and polyvinyl alcohol (PVA) were characterized and their hemostatic efficiencies both in vitro and in vivo were investigated and compared to commercial materials (ChitoGauze®XR and Spongostan™). All aerogels exhibited highly porous structures and a negative surface charge density favorable to their interaction with blood cells. The in vitro studies showed that all aerogels coagulated >60 % of the blood contained in their structures after 240 s of the whole-blood clotting assay, the GO-CS aerogel being the one with the highest blood clotting. All aerogels showed high hemocompatibility, with hemolytic rates <5 %, indicating their use as biomaterials. Among them, the GO-GEL aerogel exhibited the lowest hemolytic activity, due possibly to its high GEL content compared to the GO amount. According to their blood clotting activity, aerogels did not promote coagulation through extrinsic and intrinsic pathways. However, their surfaces are suitable for accelerating hemostasis by promoting alternative routes. All aerogels adhered platelets and gathered RBCs on their surfaces, and in addition the GO-CS aerogel surface also promoted the formation of filamentous fibrin networks adhered on its structure. Furthermore, in vivo evaluations revealed that all aerogels significantly shortened the hemostatic times and reduced the blood loss amounts compared both to the Spongostan™ and ChitoGauze®XR commercial materials and to the gauze sponge (control group). The hemostatic performance in vitro and in vivo of these aerogels suggests that they could be used as hemostats for controlling profuse bleedings.


Assuntos
Quitosana , Grafite , Hemostáticos , Quitosana/química , Gelatina/farmacologia , Grafite/farmacologia , Hemorragia , Hemostáticos/farmacologia , Humanos , Polímeros
4.
Polymers (Basel) ; 14(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35745907

RESUMO

In this study, poly(ε-caprolactone) (PCL)/gelatin (GEL) electrospun nanofibers loaded with two different concentrations of Pinus radiata bark extracts (PEs) were fabricated via electrospinning for wound healing applications. The effects of incorporating PE into PCL/GEL electrospun nanofibers were investigated regarding their physicochemical properties and in vitro biocompatibility. All electrospun nanofibers showed smooth, uniform, and bead-free surfaces. Their functional groups were detected by ATR-FTIR spectroscopy, and their total phenol content was measured by a Folin-Ciocalteu assay. With PE addition, the electrospun nanofibers exhibited an increase in their wettability and degradation rates over time and a decrease in their tensile stress values from 20 ± 4 to 8 ± 2 MPa for PCL/GEL and PCL/GEL/0.36%PE samples, respectively. PE was also released from the fibrous mats in a rather controlled fashion. The PCL/GEL/0.18%PE and PCL/GEL/0.36%PE electrospun nanofibers inhibited bacterial activity at around 6 ± 0.1% and 23 ± 0.3% against E. coli and 14 ± 0.1% and 18 ± 0.2% against S. aureus after 24 h incubation, respectively. In vitro cell studies showed that PE-loaded electrospun nanofibers enhanced HaCaT cell growth, attachment, and proliferation, favoring cell migration towards the scratch area in the wound healing assay and allowing a complete wound closure after 72 h treatment. These findings suggested that PE-loaded electrospun nanofibers are promising materials for antibiotic-free dressings for wound healing applications.

5.
Colloids Surf B Biointerfaces ; 206: 111941, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34216847

RESUMO

Aerogels based on gelatin and graphene oxide (GO) were synthesized by microwave-assisted reactions, incorporating grape skin extracts -high in proanthocyanidins (PAs)- to develop a hemostatic device with improved properties. The effects of incorporating PAs into the aerogels were investigated in relation to their physicochemical properties, absorption ability, clotting activity and cytotoxicity in human dermal fibroblast (HDF) cells. The aerogels presented highly resistant porous structures, capable of absorbing more than 50 times their weight when in contact with a phosphate saline solution (PBS) and fresh human blood. Interestingly, the addition of PAs increased the negative surface charges and the blood absorption ability of the aerogels, which may make them suitable for hemostasis. The incorporation of 5% and 10% (w/w) of extracts into the aerogels increased the total coagulated blood content by 36.6% and 24.5% compared with gelatin-GO aerogel, respectively. These improvements in the hemostatic properties of the aerogels were greater with the inclusion of 5% (w/w) of grape skin extracts into the aerogels. The aerogels were also able to adhere red blood cells onto their surfaces, which could favor the formation of stable fibrin networks to promote hemostasis. Their clotting activity suggested the activation of alternative routes based on complement coagulation systems. Finally, the aerogels were non-toxic for HDF cells and the PAs were successfully released from their matrices. Thus, gelatin-GO aerogels reinforced with PAs are promising as topical phytodrug delivery systems, with great potential for wound healing processes.


Assuntos
Grafite , Proantocianidinas , Bandagens , Gelatina , Humanos , Proantocianidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...