Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 23(24): 5120-5130, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37937378

RESUMO

In recent decades, the rise of ß-lactamases has substantially led to the emergence and wide spread of antibiotic resistance posing a serious global health threat. There is growing need for the development of rapid, cost-effective and user-friendly diagnostic assays for the accurate detection of ß-lactamases to optimize patient outcomes and prevent the spread of multidrug-resistances. In this article, we present a poly-dimethylacrylamide (PDMA)-based surface functionalization to immobilize ß-lactam antibiotics and ß-lactamase inhibitors of different subclasses. Immobilization was induced via UV-crosslinking through C,H-insertion reactions. The functional coatings were successfully applied in a highly efficient assay for the determination of recombinant ß-lactamases as well as ß-lactamases isolated from clinically relevant bacterial strains. Thus, this method describes an innovative approach with several significant benefits for diagnostic applications: the creation of specific detection platforms tailored for ß-lactamase activity, the development of high-throughput diagnostic assays and benefits regarding stability and shelf-life. Furthermore, this method is highly adaptable to other surfaces, antibiotics, and analytes, offering far-reaching implications for various biomedical, environmental, and antimicrobial applications.


Assuntos
Inibidores de beta-Lactamases , beta-Lactamases , Humanos , Inibidores de beta-Lactamases/farmacologia , Antibacterianos/farmacologia , Monobactamas , Penicilinas
2.
Diagnostics (Basel) ; 12(6)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35741190

RESUMO

Kynurenine is a tryptophan metabolite linked to several inflammatory processes including transplant failure, a significant challenge in transplant medicine. The detection of small molecules such as kynurenine, however, is often complex and time consuming. Herein, we report the successful synthesis of a fluorescently labelled kynurenine derivative, showing proper fluorescence and anti-kynurenine antibody binding behavior in a magnetic bead immunoassay (MIA). The fluorescent kynurenine-rhodamine B conjugate shows a KD-value of 5.9 µM as well as IC50 values of 4.0 µM in PBS and 10.2 µM in saliva. We thus introduce a rapid test for kynurenine as a potential biomarker for kidney transplant failure.

3.
Pharmaceutics ; 13(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34683942

RESUMO

Improving medical implants with functional polymer coatings is an effective way to further improve the level of medical care. Antibacterial and biofilm-preventing properties are particularly desirable in the area of wound healing, since there is a generally high risk of infection, often with a chronic course in the case of biofilm formation. To prevent this we here report a polymeric design of polymer-bound N-acetyl-glucosamine-oligoethylene glycol residues that mimic a cationic, antibacterial, and biocompatible chitosan surface. The combination of easy to use, crosslinkable, thin, potentially 3D-printable polymethacrylate layering with antibacterial and biocompatible functional components will be particularly advantageous in the medical field to support a wide range of implants as well as wound dressings. Different polymers containing a N-acetylglucosamine-methacryloyl residue with oligoethylene glycol linkers and a methacryloyl benzophenone crosslinker were synthesized by free radical polymerization. The functional monomers and corresponding polymers were characterized by 1H, 13C NMR, and infrared (IR) spectroscopy. The polymers showed no cytotoxic or antiadhesive effects on fibroblasts as demonstrated by extract and direct contact cell culture methods. Biofilm formation was reduced by up to 70% and antibacterial growth by 1.2 log, particularly for the 5% GlcNAc-4EG polymer, as observed for Escherichia coli and Staphylococcus aureus as clinically relevant Gram-negative and Gram-positive model pathogens.

4.
Int J Mol Sci ; 22(1)2020 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33375478

RESUMO

An aging population leads to increasing demand for sustained quality of life with the aid of novel implants. Patients expect fast healing and few complications after surgery. Increased biofunctionality and antimicrobial behavior of implants, in combination with supportive stem cell therapy, can meet these expectations. Recent research in the field of bone implants and the implementation of autologous mesenchymal stem cells in the treatment of bone defects is outlined and evaluated in this review. The article highlights several advantages, limitations and advances for metal-, ceramic- and polymer-based implants and discusses the future need for high-throughput screening systems used in the evaluation of novel developed materials and stem cell therapies. Automated cell culture systems, microarray assays or microfluidic devices are required to efficiently analyze the increasing number of new materials and stem cell-assisted therapies. Approaches described in the literature to improve biocompatibility, biofunctionality and stem cell differentiation efficiencies of implants range from the design of drug-laden nanoparticles to chemical modification and the selection of materials that mimic the natural tissue. Combining suitable implants with mesenchymal stem cell treatment promises to shorten healing time and increase treatment success. Most research studies focus on creating antibacterial materials or modifying implants with antibacterial coatings in order to address the increasing number of complications after surgeries that are mostly caused by bacterial infections. Moreover, treatment of multiresistant pathogens will pose even bigger challenges in hospitals in the future, according to the World Health Organization (WHO). These antibacterial materials will help to reduce infections after surgery and the number of antibiotic treatments that contribute to the emergence of new multiresistant pathogens, whilst the antibacterial implants will help reduce the amount of antibiotics used in clinical treatment.


Assuntos
Regeneração Óssea , Ensaios de Triagem em Larga Escala/métodos , Células-Tronco Mesenquimais/citologia , Transplante de Células-Tronco/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Cicatrização , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Regeneração Óssea/fisiologia , Técnicas de Cultura de Células/métodos , Cerâmica/química , Cerâmica/uso terapêutico , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Metais/química , Metais/uso terapêutico , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Polímeros/química , Polímeros/uso terapêutico , Alicerces Teciduais/microbiologia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...