Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 354: 120-127, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36581261

RESUMO

Quality control of pharmaceutical and biopharmaceutical products, and verification of their safety and efficacy, depends on reliable measurements of critical quality attributes (CQAs). The task becomes particularly challenging for drug products and vaccines containing nanomaterials, where multiple complex CQAs must be identified and monitored. To reduce (i) the risk of measurement bias and (ii) the uncertainty in decision-making during product development, the combination of orthogonal and complementary analytical techniques are generally recommended by regulators. However, despite frequent reference to "orthogonal" and "complementary" in guidance documents, neither term is clearly defined. How does one determine if two analytical methods are orthogonal or complementary to one another? Definitions are needed to design a robust characterization strategy aligned to regulatory needs. Definitions for "orthogonal" and "complementary" are proposed that are compatible with existing metrological terminology and are applicable to complex measurement problems. Orthogonal methods target the quantitative evaluation of the true value of a product attribute to address unknown bias or interference. Complementary measurements include a broader scope of methods that reinforce each other to support a common decision. Examples of the application of these terms are presented, with a focus on measurement of physical properties of nano-enabled drug products, including liposomes and polymeric nanoparticles for cancer treatment, lipid-based nanoparticles (LNPs) and virus-like particles for nucleic acid delivery. The proposed framework represents a first step in advancing the assessment of the orthogonality and complementarity of two measurements and it can potentially serve as the basis for a future international standard. This framework may help product developers to implement more efficient product characterization strategies, accelerate the introduction of novel medicines to the clinic and be applicable to other therapeutics beyond nanomaterial-containing pharmaceuticals.


Assuntos
Nanopartículas , Nanoestruturas
2.
Adv Drug Deliv Rev ; 184: 114236, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35351470

RESUMO

The success of the messenger RNA-based COVID-19 vaccines of Moderna and Pfizer/BioNTech marks the beginning of a new chapter in modern medicine. However, the rapid rise of mRNA therapeutics has resulted in a regulatory framework that is somewhat lagging. The current guidelines either do not apply, do not mention RNA therapeutics, or do not have widely accepted definitions. This review describes the guidelines for preclinical biodistribution studies of mRNA/siRNA therapeutics and highlights the relevant differences for mRNA vaccines. We also discuss the role of in vivo RNA imaging techniques and other assays to fulfill and/or complement the regulatory requirements. Specifically, quantitative whole-body autoradiography, microautoradiography, mass spectrometry-based assays, hybridization techniques (FISH, bDNA), PCR-based methods, in vivo fluorescence imaging, and in vivo bioluminescence imaging, are discussed. We conclude that this new and rapidly evolving class of medicines demands a multi-layered approach to fully understand its biodistribution and in vivo characteristics.


Assuntos
Vacinas contra COVID-19 , COVID-19 , COVID-19/terapia , Humanos , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Distribuição Tecidual , Vacinas de mRNA
3.
J Control Release ; 336: 192-206, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34126169

RESUMO

Nanotechnology-based health products are providing innovative solutions in health technologies and the pharmaceutical field, responding to unmet clinical needs. However, suitable standardised methods need to be available for quality and safety assessments of these innovative products prior to their translation into the clinic and for monitoring their performance when manufacturing processes are changed. The question arises which technological solutions are currently available within the scientific community to support the requested characterisation of nanotechnology-based products, and which methodological developments should be prioritized to support product developers in their regulatory assessment. To this end, the work presented here explored the state-of-the-art methods to identify methodological gaps associated with the preclinical characterisation of nanotechnology-based medicinal products and medical devices. The regulatory information needs, as expressed by regulatory authorities, were extracted from the guidance documents released so far for nanotechnology-based health products and mapped against available methods, thus allowing an analysis of methodological gaps and needs. In the first step, only standardised methods were considered, leading to the identification of methodological needs in five areas of characterisation, including: (i) surface properties, (ii) drug loading and release, (iii) kinetic properties in complex biological media, (iv) ADME (absorption, distribution, metabolism and excretion) parameters and (v) interaction with blood and the immune system. In the second step, a detailed gap analysis included analytical approaches in earlier stages of development, and standardised test methods from outside of the nanotechnology field that could address the identified areas of gaps. Based on this analysis, three categories of methodological needs were identified, including (i) method optimisation/adaptation to nanotechnological platforms, (ii) method validation/standardisation and (iii) method development for those areas where no technological solutions currently exist. The results of the analysis presented in this work should raise awareness within the scientific community on existing and emerging methodological needs, setting priorities for the development and standardisation of relevant analytical and toxicological methods allowing the development of a robust testing strategy for nanotechnology-based health products.


Assuntos
Nanomedicina , Nanotecnologia , Padrões de Referência
4.
Eur J Pharm Biopharm ; 163: 252-265, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33745980

RESUMO

Lipid-based nanoparticles for RNA delivery (LNP-RNA) are revolutionizing the nanomedicine field, with one approved gene therapy formulation and two approved vaccines against COVID-19, as well as multiple ongoing clinical trials. As for other innovative nanopharmaceuticals (NPhs), the advancement of robust methods to assess their quality and safety profiles-in line with regulatory needs-is critical for facilitating their development and clinical translation. Asymmetric-flow field-flow fractionation coupled to multiple online optical detectors (MD-AF4) is considered a very versatile and robust approach for the physical characterisation of nanocarriers, and has been used successfully for measuring particle size, polydispersity and physical stability of lipid-based systems, including liposomes and solid lipid nanoparticles. However, the unique core structure of LNP-RNA, composed of ionizable lipids electrostatically complexed with RNA, and the relatively labile lipid-monolayer coating, is more prone to destabilization during focusing in MD-AF4 than previously characterised nanoparticles, resulting in particle aggregation and sample loss. Hence characterisation of LNP-RNA by MD-AF4 needs significant adaptation of the methods developed for liposomes. To improve the performance of MD-AF4 applied to LNP-RNA in a systematic and comprehensive manner, we have explored the use of the frit-inlet channel where, differently from the standard AF4 channel, the particles are relaxed hydrodynamically as they are injected. The absence of a focusing step minimizes contact between the particle and the membrane, reducing artefacts (e.g. sample loss, particle aggregation). Separation in a frit-inlet channel enables satisfactory reproducibility and acceptable sample recovery in the commercially available MD-AF4 instruments. In addition to slice-by-slice measurements of particle size, MD-AF4 also allows to determine particle concentration and the particle size distribution, demonstrating enhanced versatility beyond standard sizing measurements.


Assuntos
Portadores de Fármacos/química , Lipídeos/química , Nanopartículas/química , RNA/administração & dosagem , RNA/química , Fracionamento por Campo e Fluxo/métodos , Humanos , Nanomedicina/métodos , Tamanho da Partícula , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química
5.
J Chromatogr A ; 1635: 461767, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33310281

RESUMO

Asymmetric-flow field-flow fractionation (AF4) has been recognized as an invaluable tool for the characterisation of particle size, polydispersity, drug loading and stability of nanopharmaceuticals. However, the application of robust and high quality standard operating procedures (SOPs) is critical for accurate measurements, especially as these complex drug nanoformulations are most often inherently polydisperse. In this review we describe a unique international collaboration that lead to the development of a robust SOP for the measurement of physical-chemical properties of nanopharmaceuticals by multi-detector AF4 (MD-AF4) involving two state of the art infrastructures in the field of nanomedicine, the European Union Nanomedicine Characterization Laboratory (EUNCL) and the National Cancer Institute-Nanotechnology Characterisation Laboratory (NCI-NCL). We present examples of how MD-AF4 has been used for the analysis of key quality attributes, such as particle size, shape, drug loading and stability of complex nanomedicine formulations. The results highlight that MD-AF4 is a very versatile analytical technique to obtain critical information on a material particle size distribution, polydispersity and qualitative information on drug loading. The ability to conduct analysis in complex physiological matrices is an additional very important advantage of MD-AF4 over many other analytical techniques used in the field for stability studies. Overall, the joint NCI-NCL/EUNCL experience demonstrates the ability to implement a powerful and highly complex analytical technique such as MD-AF4 to the demanding quality standards set by the regulatory authorities for the pre-clinical safety characterization of nanomedicines.


Assuntos
Fracionamento por Campo e Fluxo , Nanomedicina/métodos , Tamanho da Partícula , Composição de Medicamentos/normas , União Europeia , Humanos , Laboratórios/normas , Nanomedicina/normas , Nanotecnologia , National Cancer Institute (U.S.) , Preparações Farmacêuticas/normas , Estados Unidos
6.
Int J Pharm ; 548(2): 730-739, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29133206

RESUMO

In the field of nanomedicine, nanoparticles are developed to target antibiotics to sites of bacterial infection thus enabling adequate drug exposure and decrease development of resistant bacteria. In the present study, we investigated the encapsulation of two antibiotics with different polarity into different PEGylated polymeric nanoparticles based on aliphatic polyesters, to obtain a better understanding of critical factors determining encapsulation and release. The nanoparticles were prepared from diblock copolymers comprising of a poly(ethylene glycol) block attached to an aliphatic polyester block of varying polarity: poly(lactic-co-glycolic acid) (mPEG-PLGA), poly(lactic-co-hydroxymethyl glycolic acid) (mPEG-PLHMGA) and poly(lactic-co-benzyloxymethyl glycolic acid) (mPEG-PLBMGA). Hydrophobic bedaquiline and hydrophilic vancomycin were encapsulated via single and double-emulsion solvent evaporation techniques, respectively. Encapsulation, degradation and release studies at physiological simulating conditions were performed. Drug polarity and preparation techniques influenced encapsulation efficiency into polymer nanoparticles, giving almost complete encapsulation of bedaquiline and approx. 30% for vancomycin independent of the polymer type. The nonpolar bedaquiline showed a predominantly diffusion-controlled release independent of polymer composition. However, polar vancomycin was released by a combination of diffusion and polymer degradation, which was significantly affected by polymer composition, the most hydrophilic polymer displaying the fastest release.


Assuntos
Antibacterianos/química , Ácidos Graxos/química , Nanopartículas/química , Poliésteres/química , Polímeros/química , Antibacterianos/farmacocinética , Composição de Medicamentos , Liberação Controlada de Fármacos , Ácidos Graxos/farmacocinética , Nanopartículas/metabolismo , Poliésteres/farmacocinética , Polímeros/farmacocinética
7.
Antibiot Khimioter ; 50(7): 18-22, 2005.
Artigo em Russo | MEDLINE | ID: mdl-16768209

RESUMO

New polyene macrolide S44HP was purified from the culture of recombinant Streptomyces noursei strain with engineered nystatin polyketide synthase. S44HP, nystatin (NYS), and amphotericin B (Amph-B) were tested against 19 clinical fungal isolates in agar diffusion assay, which demonstrated clear differences in antifungal activities of these antibiotics. Sodium deoxycholate suspensions of all three antibiotics were subjected to acute toxicity studies in vivo upon intravenous administration in mice. NYS exhibited the lowest acute toxicity in mice in these experiments, while both Amph-B and S44HP were shown to be 4 times more toxic as judged from the LD50 values. While the acute toxicity of S44HP was higher than that of Amph-B, the data analysis revealed a significantly increased LD10 to LD50 dose interval for S44HP compared to Amph-B. The data revealed structural features of polyene macrolides, which might have an impact on both the activity and toxicity profiles of these antibiotics. These results represent the first example of preclinical evaluation of an "engineered" polyene macrolide, and can be valuable for rational design of novel antifungal drugs with improved pharmacological properties.


Assuntos
Antifúngicos/farmacologia , Nistatina/análogos & derivados , Nistatina/farmacologia , Anfotericina B/farmacologia , Anfotericina B/toxicidade , Animais , Antifúngicos/isolamento & purificação , Antifúngicos/toxicidade , Contagem de Colônia Microbiana , Engenharia Genética , Dose Letal Mediana , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Nistatina/isolamento & purificação , Nistatina/toxicidade , Policetídeo Sintases/genética , Streptomyces/genética , Streptomyces/metabolismo , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...