Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(22)2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37998396

RESUMO

Chinese hamster ovary (CHO) cells are the cell line of choice for producing recombinant therapeutic proteins. Despite improvements in production processes, reducing manufacturing costs remains a key driver in the search for more productive clones. To identify media additives capable of increasing protein production, CHOZN® GS-/- cell lines were screened with 1280 small molecules, and two were identified, forskolin and BrdU, which increased productivity by ≥40%. While it is possible to incorporate these small molecules into a commercial-scale process, doing so may not be financially feasible or could raise regulatory concerns related to the purity of the final drug substance. To circumvent these issues, RNA-Seq was performed to identify transcripts which were up- or downregulated upon BrdU treatment. Subsequent Reactome pathway analysis identified the electron transport chain as an affected pathway. CRISPR/Cas9 was utilized to create missense mutations in two independent components of the electron transport chain and the resultant clones partially recapitulated the phenotypes observed upon BrdU treatment, including the productivity of recombinant therapeutic proteins. Together, this work suggests that BrdU can enhance the productivity of CHO cells by modulating cellular energetics and provides a blueprint for translating data from small molecule chemical screens into genetic engineering targets to improve the performance of CHO cells. This could ultimately lead to more productive host cell lines and a more cost-effective method of supplying medication to patients.


Assuntos
Cricetulus , Cricetinae , Animais , Humanos , Células CHO , Bromodesoxiuridina/metabolismo , Transporte de Elétrons , Proteínas Recombinantes/metabolismo
2.
Biotechnol Bioeng ; 119(12): 3632-3646, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36073082

RESUMO

Chinese hamster ovary (CHO) cells have been used as the industry standard for the production of therapeutic monoclonal antibodies for several decades. Despite significant improvements in commercial-scale production processes and media, the CHO cell has remained largely unchanged. Due to the cost and complexity of whole-genome sequencing and gene-editing it has been difficult to obtain the tools necessary to improve the CHO cell line. With the advent of next-generation sequencing and the discovery of the CRISPR/Cas9 system it has become more cost effective to sequence and manipulate the CHO genome. Here, we provide a comprehensive de novo assembly and annotation of the CHO-K1 based CHOZN® GS-/- genome. Using this platform, we designed, built, and confirmed the functionality of a whole genome CRISPR guide RNA library that will allow the bioprocessing community to design a more robust CHO cell line leading to the production of life saving medications in a more cost-effective manner.


Assuntos
Sistemas CRISPR-Cas , Genoma , Cricetinae , Animais , Cricetulus , Células CHO , Sistemas CRISPR-Cas/genética , Genoma/genética , RNA Guia de Cinetoplastídeos/genética
3.
Sci Rep ; 9(1): 3587, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837529

RESUMO

The robust detection of structural variants in mammalian genomes remains a challenge. It is particularly difficult in the case of genetically unstable Chinese hamster ovary (CHO) cell lines with only draft genome assemblies available. We explore the potential of the CRISPR/Cas9 system for the targeted capture of genomic loci containing integrated vectors in CHO-K1-based cell lines followed by next generation sequencing (NGS), and compare it to popular target-enrichment sequencing methods and to whole genome sequencing (WGS). Three different CRISPR/Cas9-based techniques were evaluated; all of them allow for amplification-free enrichment of target genomic regions in the range from 5 to 60 fold, and for recovery of ~15 kb-long sequences with no sequencing artifacts introduced. The utility of these protocols has been proven by the identification of transgene integration sites and flanking sequences in three CHO cell lines. The long enriched fragments helped to identify Escherichia coli genome sequences co-integrated with vectors, and were further characterized by Whole Genome Sequencing (WGS). Other advantages of CRISPR/Cas9-based methods are the ease of bioinformatics analysis, potential for multiplexing, and the production of long target templates for real-time sequencing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mamíferos/genética , Animais , Células CHO , Mapeamento Cromossômico , Cricetinae , Cricetulus
4.
Biotechnol Bioeng ; 114(3): 576-588, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27642072

RESUMO

Contamination by the parvovirus minute virus of mice (MVM) remains a challenge in Chinese hamster ovary (CHO) biopharmaceutical production processes. Although infrequent, infection of a bioreactor can be catastrophic for a manufacturer, can impact patient drug supply and safety, and can have regulatory implications. We evaluated engineering a CHO parental cell line (CHOZN® GS-/- ) to create a new host cell line that is resistant to MVM infection by modifying the major receptors used by the virus to enter cells. Attachment to a cell surface receptor is a key first step in the infection cycle for many viruses. While the exact functional receptor for MVM binding to CHO cell surface is unknown, sialic acid on the cell surface has been implicated. In this work, we used the zinc finger nuclease gene editing technology to validate the role of sialic acid on the cell surface in the binding and internalization of the MVM virus. Our approach was to systematically mutate genes involved in cell surface sialylation and then challenge each cell line for their ability to resist viral entry and propagation. To test the importance of sialylation, the following genes were knocked out: the CMP-sialic acid transporter, solute carrier family 35A1 (Slc35a1), the core 1-ß-1,3-galactosyltransferase-1 specific chaperone (Cosmc), and mannosyl (α-1,3-)-glycoprotein ß-1,2-N-acetylglucosaminyltransferase (Mgat1) as well as members of the sialyltransferase family. Slc35a1 is responsible for transporting sialic acid into the Golgi. Knocking out function of this gene in a cell results in asialylated glycan structures, thus eliminating the ability of MVM to bind to and enter the cell. The complete absence of sialic acid on the Slc35a1 knockout cell line led to complete resistance to MVM infection. The Cosmc and Mgat1 knockouts also show significant inhibition of infection likely due to their effect on decreasing cell surface sialic acid. Previously in vitro glycan analysis has been used to elucidate the precise sialic acid structures required for MVM binding and internalization. In this work, we performed the sequential knockout of various sialyltransferases that add terminal sialic acid to glycans with different linkage specificities. Cell lines with modifications of the various genes included in this study resulted in varying effects on MVM infection expanding on the knowledge of MVM receptors. MVM resistant host cell lines were also tested for the production of model recombinant proteins. Our data demonstrate that resistance against the MVM virus can be incorporated into CHO production cell lines, adding another level of defense against the devastating financial consequences of MVM infection without compromising recombinant protein yield or quality. Biotechnol. Bioeng. 2017;114: 576-588. © 2016 Wiley Periodicals, Inc.


Assuntos
Células CHO , Resistência à Doença/genética , Engenharia Genética/métodos , Interações Hospedeiro-Patógeno/genética , Vírus Miúdo do Camundongo/imunologia , Ácido N-Acetilneuramínico/genética , Animais , Cricetinae , Cricetulus , Interações Hospedeiro-Patógeno/imunologia , Modelos Biológicos , Ácido N-Acetilneuramínico/imunologia , Ácido N-Acetilneuramínico/metabolismo
5.
J Biotechnol ; 157(1): 261-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22138638

RESUMO

During large-scale manufacturing of an IgG1 monoclonal antibody in Chinese hamster ovary (CHO) cells, reduction of the antibody's disulfide bonds was observed. We present evidence that mammalian thioredoxin 1 (TXN1) is the terminal enzyme responsible for this reduction event. We demonstrate a marked prevention of IgG1 disulfide bond reduction in a cell-density dependent manner by knocking down expression of TXN1 via lentivirus transduction of short hairpin RNA.


Assuntos
Anticorpos Monoclonais/química , Dissulfetos/metabolismo , Imunoglobulina G/química , Interferência de RNA , Tiorredoxinas/genética , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Sequência de Bases , Células CHO/metabolismo , Proliferação de Células , Sobrevivência Celular , Cricetinae , Cricetulus , Humanos , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Lentivirus/genética , Dados de Sequência Molecular , Oxirredução , Engenharia de Proteínas/métodos , RNA Interferente Pequeno/genética , Transfecção
6.
Biotechnol Prog ; 27(4): 1163-71, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21692195

RESUMO

MicroRNAs (miRNAs) play important roles in global gene regulation. Researchers in recombinant protein production have proposed miRNAs as biomarkers and cell engineering targets. However, miRNA expression remains understudied in Chinese Hamster Ovary cells, one of the most commonly used host cell systems for therapeutic protein production. To profile highly conserved miRNA expression, we used the miRCURY™ miRNA array for screening miRNAs in CHO cells. The selection criteria for further miRNA profiling included positive hybridization signals and experimentally validated predicted regulatory targets. On the basis of screening, we selected 16 miRNAs for quantitative RT-PCR profiling. We profiled miR expression in parental CHO DG44 and CHO K1 cell lines as well as four recombinant DG44-derived CHO lines producing a recombinant human IgG. We observed that miR-221 and miR-222 were significantly downregulated in all IgG-producing cell lines when compared with parental DG44, whereas miR-125b was significantly downregulated in one IgG-producing line. In another IgG-producing line, miR-19a was significantly upregulated. miRNA expression was also profiled in two of these lines that were amplified by stepwise increase of methotrexate. In both amplified cell lines, let-7b and miR-221 were significantly downregulated. In parental CHO K1, let-7b, miR-15b, and miR-17 were significantly downregulated when compared with DG44. The results reported here are the first steps toward profiling highly conserved miRNAs and studying the clonal difference in miRNA expression in CHO cells and may shed light on using miRNAs in cell engineering.


Assuntos
Imunoglobulina G/metabolismo , MicroRNAs/genética , Animais , Células CHO , Técnicas de Cultura de Células/métodos , Cricetinae
7.
Plant J ; 65(2): 206-17, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21223386

RESUMO

The biosynthesis of the tocotrienol and tocopherol forms of vitamin E is initiated by prenylation of homogentisate. Geranylgeranyl diphosphate (GGDP) is the prenyl donor for tocotrienol synthesis, whereas phytyl diphosphate (PDP) is the prenyl donor for tocopherol synthesis. We have previously shown that tocotrienol synthesis is initiated in monocot seeds by homogentisate geranylgeranyl transferase (HGGT). This enzyme is related to homogentisate phytyltransferase (HPT), which catalyzes the prenylation step in tocopherol synthesis. Here we show that monocot HGGT is localized in the plastid and expressed primarily in seed endosperm. Despite the close structural relationship of monocot HGGT and HPT, these enzymes were found to have distinct substrate specificities. Barley (Hordeum vulgare cv. Morex) HGGT expressed in insect cells was six times more active with GGDP than with PDP, whereas the Arabidopsis HPT was nine times more active with PDP than with GGDP. However, only small differences were detected in the apparent Km values of barley HGGT for GGDP and PDP. Consistent with its in vitro substrate properties, barley HGGT generated a mixture of tocotrienols and tocopherols when expressed in the vitamin E-null vte2-1 mutant lacking a functional HPT. Relative levels of tocotrienols and tocopherols produced in vte2-1 differed between organs and growth stages, reflective of the composition of plastidic pools of GGDP and PDP. In addition, HGGT was able to functionally substitute for HPT to rescue vte2-1-associated phenotypes, including reduced seed viability and increased fatty acid oxidation of seed lipids. Overall, we show that monocot HGGT is biochemically distinct from HPT, but can replace HPT in important vitamin E-related physiological processes.


Assuntos
Alquil e Aril Transferases/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hordeum/enzimologia , Triticum/enzimologia , Vitamina E/biossíntese , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Animais , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Linhagem Celular , Temperatura Baixa , Endosperma/metabolismo , Hordeum/genética , Hordeum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plastídeos/metabolismo , Prenilação , Spodoptera/enzimologia , Spodoptera/metabolismo , Especificidade por Substrato , Tocoferóis/análise , Tocoferóis/metabolismo , Tocotrienóis/análise , Tocotrienóis/metabolismo , Triticum/genética , Triticum/metabolismo
8.
Biotechnol Bioeng ; 104(5): 1041-6, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19557832

RESUMO

In the present study, we have identified species-specific housekeeping genes (HKGs) for Chinese Hamster Ovary (CHO) cells using data from microarray gene expression profiling. HKGs suitable for quantitative RT-PCR normalization should display relatively stable expression levels across experimental conditions. We analyzed transcription profiles of several IgG-producing recombinant CHO cell lines under numerous culture conditions using a custom CHO DNA microarray platform and calculated relative expression variability from 124 microarrays. We selected a novel panel of candidate HKGs based on their low variability in expression from the microarray data. Compared to three traditional HKGs (Gapdh, Actb, and B2m), the majority of genes on this panel demonstrated lower or equal variability. Each candidate HKG was then validated using qRT-PCR. Final selection of CHO-specific HKGs include Actr5, Eif3i, Hirip3, Pabpn1, Vezt, Cog1, and Yaf2. The results reported here provide a useful tool for gene expression analyses in CHO cells, a critical expression platform used in biotherapeutics.


Assuntos
Células CHO , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Cricetinae , Cricetulus , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...