Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38140311

RESUMO

The completion of high-intensity exercise results in robust perturbations to physiologic homeostasis, challenging the body's natural buffering systems to mitigate the accumulation of metabolic by-products. Supplementation with bicarbonate has previously been used to offset metabolic acidosis, leading to improvements in anaerobic exercise performance. PURPOSE: The purpose of this study was to investigate the presence of ergogenic properties in naturally occurring low-dose bicarbonated water and their effects on anaerobic cycling performance and blood gas kinetics in recreationally active men and women. METHODS: Thirty-nine healthy, recreationally active men and women (28.1 ± 8.0 years, 169.8 ± 11.7 cm, 68.9 ± 10.8 kg, 20.1 ± 7.9% fat, V˙O2peak: 42.8 ± 7.6 mL/kg/min) completed two separate testing sessions consisting of 15 cycling sprints (10 s sprint, 20 s active rest) against 7.5% of their body mass. Using a randomized, double-blind, placebo-controlled, parallel group study design, study participants consumed a 10 mL/kg dose of either spring water (SW) or bicarbonated mineral water (BMW) (delivering ~3 g/day of bicarbonate) for 7 days. Venous blood was collected before, immediately after, and 5 and 10 min after the sprint protocol and was analyzed for lactate and a series of blood gas components. After the completion of 15 cycling sprints, averages of peak and mean power for bouts 1-5, 6-10, and 11-15, along with total work for the entire cycling protocol, were calculated. All performance and blood gas parameters were analyzed using a mixed-factorial ANOVA. RESULTS: pH was found to be significantly higher in the BMW group immediately after (7.17 ± 0.09 vs. 7.20 ± 0.11; p = 0.05) and 10 min post exercise (7.21 ± 0.11 vs. 7.24 ± 0.09; p = 0.04). A similar pattern of change was observed 5 min post exercise wherein pH levels in the SW group were lower than those observed in the BMW group; however, this difference did not achieve statistical significance (p = 0.09). A statistical trend (p = 0.06) was observed wherein lactate in the BMW group tended to be lower than in the SW group 5 min post exercise. No significant main effect for time (p > 0.05) or group × time interactions (p > 0.05) for the total work, average values of peak power, or average values of mean power were observed, indicating performance was unchanged. CONCLUSION: One week of consuming water with increased bicarbonate (10 mL/kg; ~3 g/day bicarbonate) showed no effect on anaerobic cycling performance. BMW decreased blood lactate concentrations 5 min after exercise and increased blood pH immediately and 10 min after exercise.


Assuntos
Desempenho Atlético , Águas Minerais , Masculino , Humanos , Feminino , Bicarbonatos , Anaerobiose , Ácido Láctico , Ciclismo/fisiologia , Suplementos Nutricionais , Método Duplo-Cego
2.
Front Sports Act Living ; 4: 1070477, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726396

RESUMO

Background: The metabolic impact of pre-exercise feeding of protein or carbohydrate on fat oxidation and energy expenditure rates, especially, in females, is poorly understood. Methods: Recreationally active females (n = 15, 32 ± 10 years, 164.8 ± 5.6 cm, 63.5 ± 9.3 kg, 23.4 ± 3.2 kg/m2) completed four testing sessions in a randomized, double-blind, crossover fashion after fasting overnight. Participants ingested isovolumetric and isoenergetic solutions containing either 25 g of whey protein, casein protein, carbohydrate (CHO), or a non-caloric placebo (PLA). Participants then completed 60 min of treadmill exercise at 15% below ventilatory threshold 30 min after ingestion. Respiratory exchange ratio (RER) was evaluated throughout exercise and resting energy expenditure (REE) was assessed pre-exercise, and 0-, 60-, and 120-min post-exercise. Results: A significant condition x time interaction was observed for RER (p = 0.008) during exercise, with CHO exhibiting higher RER values (vs. PLA) at four time points. A significant main effect for condition was observed for carbohydrate (p = 0.001) and fat (p = 0.02) oxidation rates during exercise, with fat oxidation rates being higher in PLA vs. CHO (p = 0.01). When total fat oxidized was calculated across the entire exercise bout, a significant main effect for condition was observed (p = 0.01), with PLA being greater than CHO (p = 0.04). A significant condition x time interaction (p = 0.02) was found for both absolute and normalized REE, with casein and whey protein having significantly higher values than CHO (p < 0.05) immediately post-exercise. Conclusion: When compared to a fasted control (PLA), consuming CHO, but not protein, decreased total fat oxidation prior to a 60-min bout of moderate-intensity exercise in females.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...