Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 199: 106620, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38917661

RESUMO

Ongoing warming is leading to the accelerated shrinkage of glaciers located on Arctic islands. Consequently, the influence of glacial meltwater on phytoplankton primary production in Arctic bays becomes critically important in an era of warming. This work studies the spatiotemporal variation of primary production and chlorophyll a concentration in the bays along the eastern coast of the Novaya Zemlya archipelago. Data were collected during nine cruises performed from July to October (2013-2022). The effect of underwater photosynthetically available radiation (PAR) and nutrients on primary production was assessed separately for bays influenced by glacial meltwater (glacial bays) and those without such influence (non-glacial bays). The median value of water column-integrated primary production (IPP) for all bays was 38 mgC m-2 d-1, characterizing them as oligotrophic areas. IPP in non-glacial bays was found to be 2.3-fold and 1.4-fold higher than that in glacial bays during summer and autumn, respectively. Underwater PAR was the main abiotic factor determining IPP during the ice-free period. In the entire bays nutrient concentrations were high, exceeding the limiting values for growth and photosynthesis of phytoplankton. It was concluded that the high turbidity from glacial meltwater runoff leads to decreased underwater PAR and, consequently, to a decline in IPP. This study demonstrates that rapid warming could have a negative impact on the productivity of high Arctic bays and their adjacent areas.

2.
FEMS Microbiol Ecol ; 95(11)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31712814

RESUMO

Nitrogen fixation (NF) of phototrophic communities was studied in a number of soda lakes with a wide range of salinity (25-400 g/l) located in Kulunda Steppe (Altai, Russia) during several summer seasons (2011-2016). The phototrophic communities were represented by the algal-bacterial Ctenocladus communities or cyanobacterial biofilms dominated by heterocystous and non-heterocystous cyanobacteria and purple sulfur bacteria Ectothiorhodospira sp. (up to 210 g/l) and endoevaporitic Euhalothece communities dominated by the extremely salt-tolerant unicellular cyanobacterium Euhalothece sp. and Ectothiorhodospira sp. (above 350 g/l). Salinity was the major factor influencing the composition and NF potential of the phototrophic communities. The communities dominated by vegetative heterocystous cyanobacteria exhibited light-independent NF at total salinity up to 60 g/l. The communities dominated by non-heterocystous cyanobacteria exhibited light-dependent NF in a range of 55-100 g/l, but it was significantly suppressed at 100 g/l. At 160-200 g/l the dark heterotrophic NF was a prevailing process if communities didn't contain Euhalothece sp. At salt-saturating ranges above 350 g/l, light-dependent NF associated with the Euhalothece communities was detected. A statistically significant positive correlation between the NF and diurnal light intensity was found in all samples of communities dominated by non-heterocystous cyanobacteria in contrast to communities dominated by heterocystous cyanobacteria with insignificant correlation coefficients.


Assuntos
Lagos/microbiologia , Fixação de Nitrogênio , Clorófitas , Chromatiaceae/metabolismo , Cianobactérias/metabolismo , Processos Fototróficos , Filogenia , Federação Russa , Salinidade
3.
Extremophiles ; 22(4): 651-663, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29663079

RESUMO

Bitter-1 is a shallow hypersaline soda lake in Kulunda Steppe (Altai region, Russia). During a study period between 2005 and 2016, the salinity in the littoral area of the lake fluctuated within the range from 85 to 400 g/L (in July of each year). Light-dependent nitrogen fixation occurred in this lake up to the salt-saturating conditions. The rates increased with a decrease in salinity, both under environmental conditions and in laboratory simulations. The salinities below 100 g/L were favorable for light-dependent nitrogen fixation, while the process was dramatically inhibited above 200 g/L salts. The analysis of nifH genes in environmental samples and in enrichment cultures of diazotrophic phototrophs suggested that anaerobic fermenting and sulfate-reducing bacteria could participate in the dark nitrogen fixation process up to soda-saturating conditions. However, we cannot exclude the possibility that haloalkaliphilic nonheterocystous cyanobacteria (Euhalothece sp. and Geitlerinema sp.) and anoxygenic purple sulfur bacteria (Ectothiorhodospira sp.) might also play a role in the process at light conditions. The heterocystous cyanobacterium Nodularia sp. develops at low salinity (below 80 g/L) that is not characteristic for Bitter-1 Lake and thus does not make a significant contribution to the nitrogen fixation in this lake.


Assuntos
Lagos/microbiologia , Microbiota , Fixação de Nitrogênio , Fermentação , Lagos/química , Salinidade , Sibéria , Sulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...