Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(45): 10103-10112, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37921710

RESUMO

Excitation with one photon of a singlet fission (SF) material generates two triplet excitons, thus doubling the solar cell efficiency. Therefore, the SF molecules are regarded as new generation organic photovoltaics, but it is hard to identify them. Recently, it was demonstrated that molecules of low-to-intermediate diradical character (DRC) are potential SF chromophores. This prompts a low-cost strategy for finding new SF candidates by computational high-throughput workflows. We propose a machine learning aided screening for SF entrants based on their DRC. Our data set comprises 469 784 compounds extracted from the PubChem database, structurally rich but inherently imbalanced regarding DRC values. We developed well performing classification models that can retrieve potential SF chromophores. The latter (∼4%) were analyzed by K-means clustering to reveal qualitative structure-property relationships and to extract strategies for molecular design. The developed screening procedure and data set can be easily adapted for applications of diradicaloids in photonics and spintronics.

2.
Materials (Basel) ; 16(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37895669

RESUMO

The redox properties of quinones underlie their unique characteristics as organic battery components that outperform the conventional inorganic ones. Furthermore, these redox properties could be precisely tuned by using different substituent groups. Machine learning and statistics, on the other hand, have proven to be very powerful approaches for the efficient in silico design of novel materials. Herein, we demonstrated the machine learning approach for the prediction of the redox activity of quinones that potentially can serve as organic battery components. For the needs of the present study, a database of small quinone-derived molecules was created. A large number of quantum chemical and chemometric descriptors were generated for each molecule and, subsequently, different statistical approaches were applied to select the descriptors that most prominently characterized the relationship between the structure and the redox potential. Various machine learning methods for the screening of prospective organic battery electrode materials were deployed to select the most trustworthy strategy for the machine learning-aided design of organic redox materials. It was found that Ridge regression models perform better than Regression decision trees and Decision tree-based ensemble algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...