Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Basic Clin Neurosci ; 14(2): 193-202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107524

RESUMO

Introduction: Functional near-infrared spectroscopy (fNIRS) is an imaging method in which a light source and detector are installed on the head; consequently, the re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at an appropriate detector position, represents the spatial sensitivity. Methods: Modeling light propagation in a human head is essential for quantitative near-infrared spectroscopy and optical imaging. The specific form of the distribution of light is obtained using the theory of perturbation. An analytical solution of the perturbative diffusion equation (DE) and finite element method (FEM) in a Slab media (similar to the human head) makes it possible to study light propagation due to absorption and scattering of brain tissue. Results: The simulation result indicates that sensitivity is slowly decreasing in the deep area, and the sensitivity below the source and detector is the highest. The depth sensitivity and computation time of both analytical and FEM methods are compared. The simulation time of the analytical approach is four times larger than the FEM. Conclusion: In this paper, an analytical solution and the performance of FEM methods when applied to the diffusion equation for heterogeneous media with a single spherical defect are compared. The depth sensitivity along with the computation time of simulation has been investigated for both methods. For simple and Slab modes of the human brain, the analytical solution is the right candidate. Whenever the brain model is sophisticated, it is possible to use FEM methods, but it costs a higher computation time. Highlights: Analytical and finite element method (FEM) depth sensitivity are almost the same.FEM requires more computation time, but can handle complicated head models.The analytical method is proposed for the first step and simple head models. Plain Language Summary: The functional near-infrared spectroscopy (fNIRS) is a type of neuromonitoring that uses near-infrared light to measure brain activity indirectly and is similar to electroencephalography (EEG). A single-channel fNIRS system contains a near-infrared light source, which emits near-infrared light (NIR), and a detector is placed near the source. A light intensity change received by detectors indicates brain activity when NIR light penetrates into the gray matter. It is necessary to have a prior understanding of light penetration depth in order to measure brain activity more accurately. fNIRS can be better understood, optimized, and investigated through modeling light propagation in brain tissue. In order to study light in tissues, analytical and numerical methods can be used. In this work, we compared these two approaches quantitatively in a simple slab medium. We concluded that the numerical method takes too much time to calculate the results, but it can be applied to complicated head models. The results of these studies provide researchers with new insights into the modeling and simulation of fNIRS and diffuse optical tomography.

2.
Basic Clin Neurosci ; 13(1): 15-24, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589017

RESUMO

Introduction: Drugs of abuse, such as cocaine, affect different brain regions and lead to pathological memories. These abnormal memories may occur due to changes in synaptic transmissions or variations in synaptic properties of neurons. It has been shown that cocaine inhibits delayed rectifying potassium currents in affected brain regions and can create pathological memories.This study investigates how the change in the conductance of delayed rectifying potassium channels can affect the produced action potentials using a computational model. Methods: We present a computational model with different channels and receptors, including sodium, potassium, calcium, NMDARs, and AMPARs, which can produce burst-type action potentials. In the simulations, by changing the delayed rectifying potassium conductance bifurcation diagram is calculated. Results: By decreasing the potassium current for a fixed stimulatory signal, burst-type action potentials can be generated. In the following and with a further reduction of potassium conductance, produced action potentials exhibit non-linear and even chaotic behaviors. Conclusion: Results show that for a specific range of potassium conductance, a chaotic regime emerges in produced action potentials. These chaotic oscillations may play a role in inducing abnormal memories. Highlights: Cocaine consumption reduces the potassium current in affected cells.Decreasing the potassium currents elicits burst action potentials.Produced bursts might have chaotic behaviors.Chaotic oscillations might be related to the toxic effects of cocaine. Plain Language Summary: Drugs of abuse such as cocaine can manipulate brain circuits and may form some pathological memories. These memories can lead to long-term addiction. Furthermore, these drugs also can have toxic effects on the cells. Researchers are looking for the mechanisms that can lead to abnormal memories and toxic effects of drugs. It seems that an efficient mechanism that can be used by drugs of abuse is the manipulation of potassium currents in the affected cells. Here, in a computational model, we have shown that changes in the conductance of delayed rectifying potassium channels can lead to nonlinear and even chaotic behaviors in the produced action potentials. These behaviors might have a role in drug toxic effects.

3.
PLoS One ; 15(3): e0230206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32208433

RESUMO

Recent advances in optical neuroimaging systems as a functional interface enhance our understanding of neuronal activity in the brain. High density diffuse optical topography (HD-DOT) uses multi-distance overlapped channels to improve the spatial resolution of images comparable to functional magnetic resonance imaging (fMRI). The topology of the source and detector (SD) array directly impacts the quality of the hemodynamic reconstruction in HD-DOT imaging modality. In this work, the effect of different SD configurations on the quality of cerebral hemodynamic recovery is investigated by presenting a simulation setup based on the analytical approach. Given that the SD arrangement determines the elements of the Jacobian matrix, we conclude that the more individual components in this matrix, the better the retrieval quality. The results demonstrate that the multi-distance multi-directional (MDMD) arrangement produces more unique elements in the Jacobian array. Consequently, the inverse problem can accurately retrieve the brain activity of diffuse optical topography data.


Assuntos
Tomografia Óptica/métodos , Algoritmos , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...