Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 244: 114850, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283179

RESUMO

In this work, a large set of betulinic acid derivatives modified with various aromatic substituents at the position C-3 were prepared via Suzuki-Myiaura cross-coupling. All compounds were tested for their in vitro cytotoxic activity in 8 cancer and 2 healthy cell lines. Derivatives 6h, 6i, and 6o had the lowest IC50 in the CCRF-CEM cell line (0.69-4.0 µM) and had high selectivity. In addition, 6h and 6i also showed significant activity in daunorubicin-resistant CEM and taxol-resistant K562 cell lines; therefore, they were selected for the evaluation of the mechanism of action. First, the effect of 6h, 6i, and 6o on cell death induction was studied. To our surprise, we have not detected almost any apoptotic cells, even following a long-time exposure of CCRF-CEM cells to the compounds. On the other hand, a dramatic cell number decrease was observed, proportional to the time of the compound's exposure. Based on this data it was concluded that the effect of compounds is cytostatic rather than cytotoxic, which was further confirmed by subsequent studies of the impact of 6h, 6i, and 6o on the cell cycle. Detailed cell cycle analysis revealed a block in the G1 phase accompanied by reduced expression of phosphorylated forms of the RB protein as well as cyclin A protein. Evaluation of the pharmacological properties of the most promising compounds revealed their high stability in the presence of phosphate buffer, human plasma, and microsomes and limited permeability determined using permeability through artificial membrane (PAMPA) and cell permeability assay: Caco-2 and MDCK-MDR1 cell lines. Compounds 6h, 6i, and 6o were selected for further drug development; their cytostatic effect may be advantageous in this process since we expect fewer non-specific interactions and toxicity than in highly cytotoxic compounds. In addition, the activity of 6h and 6i against resistant CEM-DNR and K562-TAX leukemic cell lines makes them promising as a possible future alternative to currently used therapies.


Assuntos
Antineoplásicos , Citostáticos , Neoplasias , Humanos , Ensaios de Seleção de Medicamentos Antitumorais , Citostáticos/farmacologia , Células CACO-2 , Triterpenos Pentacíclicos/farmacologia , Antineoplásicos/farmacologia , Fenótipo , Linhagem Celular Tumoral , Apoptose
2.
Eur J Med Chem ; 243: 114777, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36174412

RESUMO

A set of fifteen triterpenoid pyrazines and pyridines was prepared from parent triterpenoid 3-oxoderivatives (betulonic acid, dihydrobetulonic acid, oleanonic acid, moronic acid, ursonic acid, heterobetulonic acid, and allobetulone). Cytotoxicity of all compounds was tested in eight cancer and two non-cancer cell lines. Evaluation of the structure-activity relationships revealed that the triterpenoid core determined whether the final molecule is active or not, while the heterocycle is able to increase the activity and modulate the specificity. Five compounds (1b, 1c, 2b, 2c, and 8) were found to be preferentially and highly cytotoxic (IC50 ≈ 1 µM) against leukemic cancer cell lines (CCRF-CEM, K562, CEM-DNR, or K562-TAX). Surprisingly, compounds 1c, 2b, and 2c are 10-fold more active in multidrug-resistant leukemia cells (CEM-DNR and K562-TAX) than in their non-resistant analogs (CCRF-CEM and K562). Pharmacological parameters were measured for the most promising candidates and two types of prodrugs were synthesized: 1) Sugar-containing conjugates, most of which had improved cell penetration and retained high cytotoxicity in the CCRF-CEM cell line, unfortunately, they lost the selectivity against resistant cells. 2) Medoxomil derivatives, among which compounds 26-28 gained activities of IC50 0.026-0.043 µM against K562 cells. Compounds 1b, 8, 21, 22, 23, and 24 were selected for the evaluation of the mechanism of action based on their highest cytotoxicity against CCRF-CEM cell line. Several experiments showed that the majority of them cause apoptosis via the mitochondrial pathway. Compounds 1b, 8, and 21 inhibit growth and disintegrate spheroid cultures of HCT116 and HeLa cells, which would be important for the treatment of solid tumors. In summary, compounds 1b, 1c, 2b, 2c, 24, and 26-28 are highly and selectively cytotoxic against cancer cell lines and were selected for future in vivo tests and further development of anticancer drugs.


Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Pró-Fármacos , Triterpenos , Humanos , Pró-Fármacos/farmacologia , Pirazinas/farmacologia , Potencial da Membrana Mitocondrial , Antineoplásicos Fitogênicos/farmacologia , Células HeLa , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Triterpenos/farmacologia , Antineoplásicos/farmacologia , Piridinas/farmacologia
3.
Eur J Med Chem ; 185: 111806, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677446

RESUMO

In this work, 35 new derivatives of betulonic, dihydrobetulonic and ursonic acid were prepared including 30 aminothiazoles and all of them were tested for their in vitro cytotoxic activity in eight cancer cell lines and two non-cancer fibroblasts. Compounds with the IC50 below 5 µM in CCRF-CEM cells and low toxicity in non-cancer fibroblasts (4m, 5c, 5m, 6c, 6m, 7b, and 7c) were further subjected to tests of pharmacological parameters yielding the final set for advanced biological evaluation (4m, 5m, 6m, and 7b). It was proved by several methods, that all of them trigger apoptosis via the intrinsic pathway and derivatives 5m and 7b are the most effective (IC50 2.4 µM and 3.6 µM). They are the best candidates to become potentially new anticancer drugs and will be subjected to in vivo tests in mice. In addition, compounds 6b and 6c deserve more attention because their activity is not limited only to chemosensitive CCRF-CEM cell line. Specifically, compound 6b is highly active against K562 leukemic cell line (0.7 µM) and its IC50 activity in colon cancer HCT116 cell line is 1.0 µM. Compound 6c is active in both normal K562 and resistant K562-TAX cell lines (IC50 3.4 µM and 5.4 µM) and both colon cancer cell lines (HCT116 and HCT116p53-/-, IC50 3.5 µM and 3.4 µM).


Assuntos
Antineoplásicos/farmacologia , Ácido Oleanólico/análogos & derivados , Terpenos/farmacologia , Tiazóis/farmacologia , Triterpenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microssomos/química , Microssomos/metabolismo , Estrutura Molecular , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Relação Estrutura-Atividade , Terpenos/síntese química , Terpenos/química , Tiazóis/síntese química , Tiazóis/química , Triterpenos/química
4.
Eur J Med Chem ; 182: 111653, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31499360

RESUMO

Triterpenoids are natural products from plants and many other organisms that have various biological activities, such as antitumor, antiviral, antimicrobial, and protective activities. This review covers the synthesis and biological evaluation of pentacyclic triterpene (PT) conjugates with other molecules that have been found to increase the IC50 or improve the pharmacological profile of the parent PT. Some of these molecules are designed to target specific proteins or cellular organelles, which has resulted in highly selective lead structures for drug development. Other PT conjugates are useful for investigating their mechanism of action. This concept has been very successful: 1) Many compounds, especially mitochondria-targeting PT conjugates, have reached a selective cytotoxicity at low nanomolar concentrations in cancer cells. 2) A number of PT conjugates have had high activity against HIV or the influenza virus. 3) Fluorescent PT conjugates have been able to visualize the PT in living cells, which has allowed quantification of the uptake and distribution of the PT within the cell. 4) Biotinylated PT conjugates have been used to identify target proteins, which may help to show their mechanism of action. 5) A large number of PT conjugates with polyethylene glycol (PEG), polyamines, etc. form nanometer-sized micelles that have a much better pharmacological profile than the PT alone. In summary, the connection of a PT to an appropriate modifying molecule has resulted in extremely useful semisynthetic compounds with a high potential to treat cancer or viral infections or compounds that are useful for the study of the mechanism of action of PTs at the molecular level.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antivirais/farmacologia , Desenho de Fármacos , Neoplasias/tratamento farmacológico , Triterpenos/farmacologia , Animais , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Antivirais/síntese química , Antivirais/química , Pesquisa Biomédica , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias/patologia , Triterpenos/síntese química , Triterpenos/química , Vírus/efeitos dos fármacos
5.
Org Biomol Chem ; 16(17): 3168-3176, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29645062

RESUMO

A practical and straightforward approach that enables, for the first time, the synthesis of enantiomerically pure 1,4,5-trisubstituted, 1,5-disubstituted, and fused 1,2,3-triazole derivatives has been developed. The synthesis employs enantiomerically pure amino esters derived from amino acids and commercially available ketones under metal-free conditions.

6.
Curr Med Chem ; 25(5): 636-658, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-28990518

RESUMO

Triterpenoids are natural compounds with a large variety of biological activities such as anticancer, antiviral, antibacterial, antifungal, antiparazitic, antiinflammatory and others. Despite their low toxicity and simple availability from the natural resources, their clinical use is still severely limited by their higher IC50 and worse pharmacological properties than in the currently used therapeutics. This fact encouraged a number of researchers to develop new terpenic derivatives more suitable for the potential clinical use. This review summarizes a new approach to improve both, the activity and ADME-Tox properties by connecting active terpenes to another modifying molecules using click reactions. Within the past few years, this synthetic approach was well explored yielding a lot of great improvements of the parent compounds along with some less successful attempts. A large quantity of the new compounds presented here are superior in both activity and ADME-Tox properties to their parents. This review should serve the researchers who need to promote their hit triterpenic structures towards their clinical use and it is intended as a guide for the chemical synthesis of better drug candidates.


Assuntos
Química Click , Terpenos/síntese química , Terpenos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antivirais/síntese química , Antivirais/farmacologia , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Humanos , Triazóis/síntese química , Triazóis/farmacologia
7.
ChemMedChem ; 12(5): 390-398, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28084676

RESUMO

A total of 41 new triterpenoids were prepared from allobetulone, methyl betulonate, methyl oleanonate, and oleanonic acid to study their influence on cancer cells. Each 3-oxotriterpene was brominated at C2 and substituted with thiocyanate; subsequent cyclization with the appropriate ammonium salts gave N-substituted thiazoles. All compounds were tested for their in vitro cytotoxic activity on eight cancer cell lines and two non-cancer fibroblasts. 2-Bromoallobetulone (2 b) methyl 2-bromobetulonate (3 b), 2-bromooleanonic acid (5 b), and 2-thiocyanooleanonic acid (5 c) were best, with IC50 values less than 10 µm against CCRF-CEM cells (e.g., 3 b: IC50 =2.9 µm) as well as 2'-(diethylamino)olean-12(13)-eno[2,3-d]thiazole-28-oic acid (5 f, IC50 =9.7 µm) and 2'-(N-methylpiperazino)olean-12(13)-eno[2,3-d]thiazole-28-oic acid (5 k, IC50 =11.4 µm). Compound 5 c leads to the accumulation of cells in the G2 phase of the cell cycle and inhibits RNA and DNA synthesis significantly at 1×IC50 . The G2 /M cell-cycle arrest probably corresponds to the inhibition of DNA/RNA synthesis, similar to the mechanism of action of actinomycin D. Compound 5 c is new, active, and nontoxic; it is therefore the most promising compound in this series for future drug development. Methyl 2-bromobetulonate (3 b) and methyl 2-thiocyanometulonate (3 c) were found to inhibit nucleic acid synthesis only at 5×IC50 . We assume that in 3 b and 3 c (unlike in 5 c), DNA/RNA inhibition is a nonspecific event, and an unknown primary cytotoxic target is activated at 1×IC50 or lower concentration.


Assuntos
Antineoplásicos/síntese química , Ácido Oleanólico/análogos & derivados , Tiazóis/química , Triterpenos/química , Antineoplásicos/química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Ácido Oleanólico/química , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/toxicidade
8.
Eur J Med Chem ; 121: 120-131, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27236068

RESUMO

Lupane derivatives containing an electronegative substituent in the position 2 of the skeleton are often cytotoxic, however, the most active compounds are not selective enough. To further study the influence of a substituent in the position 2 in lupane and 18α-oleanane derivatives on their biological properties, we prepared a set of 38 triterpenoid compounds, 19 of them new, most of them substituted in the position 2. From betulin, we obtained 2-bromo dihydrobetulonic acid and 2-bromo allobetulon and their substitutions yielded derivatives with various substituents in the position 2 such as amines, amides, thiols, and thioethers. Nitration of allobetulon and dihydrobetulonic acid gave 2-nitro and 2,2-dinitro derivatives. Fifteen derivatives had IC50 < 50 µM on a chemosensitive CCRF-CEM (acute lymphoblastic leukemia) cell line and were tested on another seven cancer cell lines including resistant and two non-cancer lines. 2-Amino allobetulin had IC50 4.6 µM and caused significant block of the tumor cells in S and slightly in G2/M transition and caused strong inhibition of DNA and RNA synthesis at 5 × IC50. 2-Amino allobetulin is the most active derivative of 18α-oleanane skeletal type prepared in our research group to date.


Assuntos
Antineoplásicos/química , Ácido Oleanólico/análogos & derivados , Triterpenos/química , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citotoxinas/química , Citotoxinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Ácidos Nucleicos/antagonistas & inibidores , Ácidos Nucleicos/biossíntese , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Triterpenos/farmacologia
9.
Eur J Med Chem ; 96: 482-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25942059

RESUMO

In this article, we describe the preparation and cytotoxic properties of a small focused library of lupane and 18α-oleanane triterpenoids that contain a combination of two structural motifs known to enhance the biological activities. First, we introduced two fluorine atoms to position 2 of the skeleton. Second, we synthesized a set of hemiester prodrugs, which were intended to increase the solubility and activity. Starting from betulin, we obtained two hydroxyketones (derivatives of dihydrobetulinic acid and allobetulin) and their fluorination using DAST provided 2,2-difluoro-3-oxo-compounds as the main products. Then the 3-oxo group in each derivative was reduced by NaBH4 to obtain 3ß-hydroxy compounds suitable for modifying by various hemiesters. We prepared 21 compounds, 11 of them new, their cytotoxicity was tested on T lymphoblastic leukemia CCRF-CEM cells first and the most active derivatives were selected for screening on another six tumor and two non-tumor cell lines. All of them showed selectivity against cancer lines with therapeutic index between 2 and 8. All hemiesters had activity in the same range as the free hydroxyl derivatives and they would be suitable prodrugs for future in vivo experiments. Interestingly, all hemiesters of 2,2-difluorodihydrobetulonic acid had higher activity against p53 knock-out p53-/- cancer cell line than against the non-mutated analog. In active derivatives, the cell cycle was analyzed by flow cytometry and several compounds slowed down cell cycle progression through G0/G1 or S-phase.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Hidrocarbonetos Fluorados/farmacologia , Triterpenos/química , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos/efeitos dos fármacos , Humanos , Hidrocarbonetos Fluorados/síntese química , Hidrocarbonetos Fluorados/química , Conformação Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...