Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 54: 48-60, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30827903

RESUMO

A green and innovative method, manothermosonication (MTS), for proteins extraction from dry Arthrospira platensis cyanobacteria assisted by ultrasound was designed in this work. Manothermosonication (probe, 20 kHz) was compared to a conventional process performed in the same conditions without ultrasounds. The extraction was carried out with a continuous flow rate at 15 mL/hour. Extraction parameters were optimized using a central composite design. Moreover, mathematic modelling and microscopic investigations were realized to allow a better understanding of ultrasound physical and structural effects on spirulina filaments and mass transfer phenomena over time. Crude extract and sections stained with toluidine blue were analyzed with optical and scanning electron microscopies. According to experimental results, MTS promoted mass transfer (high effective diffusivity, De) and enabled to get 229% more proteins (28.42 ±â€¯1.15 g/100 g DW) than conventional process without ultrasound (8.63 ±â€¯1.15 g/100 g DW). With 28.42 g of proteins per 100 g of dry spirulina biomass in the extract, a protein recovery rate of 50% was achieved in 6 effective minutes with a continuous MTS process. Microscopic observations showed that acoustic cavitation impacted spirulina filaments by different mechanisms such as fragmentation, sonoporation, detexturation. These various phenomena make extraction, release and solubilization of spirulina bioactive compounds easier.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Fracionamento Químico/métodos , Indústrias , Modelos Teóricos , Spirulina/química , Ondas Ultrassônicas , Aminoácidos/análise , Proteínas de Bactérias/química , Fracionamento Químico/instrumentação , Estudos de Viabilidade , Química Verde , Cinética , Temperatura
2.
Plant Dis ; 93(12): 1352, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30759535

RESUMO

In June 2008, tomato (Solanum lycopersicum L.) plants cv. Fer De Lance (De Ruiter Seeds, Bergschenhoek, the Netherlands) grown in greenhouses near Perpignan (southern France) showed growth reduction and necrotic lesions on fruits, stems, and basal parts of the leaves. Tomato torrado virus (ToTV) was suspected on the basis of symptoms and its recent description in Spain (4). Primer set A (3), designed to ToTV RNA-2, was used for reverse transcription (RT)-PCR experiments on RNA extracted from four infected plants and allowed the amplification of a 493-bp fragment. No amplification was observed from healthy plant extracts. The RT-PCR product was directly sequenced (GQ303330) and a BLAST search in GenBank revealed 99.8- and 99.5%-nt identity with Polish (EU563947) and Spanish type strain (DQ388880) isolates of ToTV, respectively. Double-antibody sandwich-ELISA tests were conducted on these four samples to check for the presence of other viruses commonly found in tomato crops in France. Tomato spotted wilt virus, Parietaria mottle virus, Cucumber mosaic virus, Tomato mosaic virus, and Potato virus Y were not detected but Pepino mosaic virus (PepMV) was detected in all samples. ToTV was mechanically transmitted to Physalis floridana but PepMV was not. This plant was used to inoculate healthy tomatoes that served as a ToTV source for further experiments. Mechanical inoculation to test plants showed that Nicotiana benthamiana, N. clevelandii, N. debneyi, N. glutinosa, Capsicum annuum, Solanum melongena, and some tomato cultivars (including Fer De Lance), in which typical necrotic symptoms were observed, were systemically infected by the virus. Isometric particles ~28 nm in diameter were observed by electron microscopy in crude extracts of infected plants negatively stained with 1% ammonium molybdate, pH 7. To confirm ToTV identification, whitefly transmission experiments were performed with Trialeurodes vaporariorum and Bemisia tabaci. Adult whiteflies were placed in cages with infected tomato plants for 1-, 24-, or 48-h acquisition access periods (AAP) before transferring them by groups of ~50 on susceptible tomato plantlets placed under small containers (six plants per AAP). Forty-eight hours later, plants were treated with an insecticide and transferred to an insect-proof containment growth room. Ten days later, RNA preparation from all plants was tested by RT-PCR for the presence of ToTV. No transmission was observed with a 1-h AAP. With a 24-h AAP, transmission to four of six test plants was observed with both whitefly species, while at 48 h, AAP transmission to three and four plants of six was observed with T. vaporariorum and B. tabaci, respectively. Noninoculated control plants were all negative by RT-PCR. These experiments confirm T. vaporariorum and B. tabaci as natural vectors of ToTV as previously described (1,2). ToTV has been already reported in Spain, Poland, Hungary, and Australia, but to our knowledge, this is the first report of ToTV in France. Our detection of ToTV in April 2009 from the same area revealed 7 positive tomato plants of 17 tested. This observation suggests the persistence of the disease in the Perpignan Region. References: (1) K. Amari et al. Plant Dis. 92:1139, 2008. (2) H. Pospieszny et al. Plant Dis. 91:1364, 2007 (3) J. Van der Heuvel et al. Plant Virus Designated Tomato Torrado Virus. Online publication. World Intellectual Property Organization WO/2006/085749, 2006. (4) M. Verbeek et al. Arch. Virol. 152:881, 2007.

3.
Plant Dis ; 91(3): 322, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30780568

RESUMO

Phlox paniculata L., a perennial plant from the family Polemoniaceae, is cultivated as an ornamental in gardens and for cut-flower production. In spring 2003, two types of symptoms were observed in P. paniculata plants grown for cut flowers on a farm in the Var department, France. Some plants showed a mild leaf mosaic while others showed leaf browning and delayed growth. In plants showing mild mosaic, Cucumber mosaic virus (CMV) was detected on the basis of the symptoms exhibited by a range of inoculated plants, the observation of isometric particles (approximately 30 nm) with the electron microscope in crude sap preparations from the infected plants, and the positive reaction in double-antibody sandwich (DAS)-ELISA to polyclonal antibodies raised against CMV (1). In double-immunodiffusion analysis, the five tested isolates were shown to belong to group II of CMV strains. To determine if CMV was responsible for the symptoms observed, one isolate was multiplied in Nicotiana tabacum cv. Xanthi-nc plants after isolation from local lesions on Vigna unguiculata and mechanically inoculated to 12 1-year-old P. paniculata plants. At 3 months post inoculation (mpi), all plants showed mild mosaic and CMV was detected by DAS-ELISA. In sap preparations from P. paniculata plants showing leaf browning symptoms, rod-shaped particles with two distinct sizes of 190 to 210 and 70 to 90 nm long, typical of those associated with tobraviruses, were revealed using electron microscopy. Local lesions typical of Tobacco rattle virus (TRV) were observed after inoculation of N. tabacum cv. Xanthi-nc, Chenopodium amaranticolor, and C. quinoa. Total nucleic acid preparations were prepared from symptomatic plants, and amplicons of the expected size (463 bp) were generated by reverse-transcription (RT)-PCR using primers specific to TRV RNA 1 (4). The nucleotide sequence of one amplicon was 93.6% identical to the sequence of a reference TRV isolate (GenBank Accession No. AJ586803). Twelve 1-year-old P. paniculata plants were mechanically inoculated with an extract of infected tissues from one symptomatic P. paniculata plant. TRV was detected 2 to 6 mpi in apical leaves of all inoculated plants by RT-PCR, although the plants did not express symptoms. Since no other pathogens were detected in the source plants, it is plausible that the lack of symptoms in back-inoculated plants is either due to a long incubation period or an interaction with particular environmental factors such as cold conditions. The survey of approximately 200 plants revealed that approximately 7, 10, and 1% were infected by TRV, CMV, or by both viruses, respectively. CMV and TRV were previously detected in P. paniculata in Latvian SSR and in Lithuania (2,3). These results show that sanitary selection of P. paniculata prior to vegetative propagation should include a screening for TRV and CMV infections. References: (1) J.-C. Devergne et al. Ann. Phytopathol. 10:233, 1978. (2) Y. Ignab and A. Putnaergle. Tr. Latv. S.-Kh. Akad. 118:27, 1977. (3) M. Navalinskiene and M. Samuitiene. Biologija 1:52, 1996. (4) D. J. Robinson. J. Virol. Methods 40:57, 1992.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...