Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 15(5): 1170-85, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12724542

RESUMO

Insertional mutagenesis of Arabidopsis ecotype C24 was used to identify a novel mutant, designated wax2, that had alterations in both cuticle membrane and cuticular waxes. Arabidopsis mutants with altered cuticle membrane have not been reported previously. Compared with the wild type, the cuticle membrane of wax2 stems weighed 20.2% less, and when viewed using electron microscopy, it was 36.4% thicker, less opaque, and structurally disorganized. The total wax amount on wax2 leaves and stems was reduced by >78% and showed proportional deficiencies in the aldehydes, alkanes, secondary alcohols, and ketones, with increased acids, primary alcohols, and esters. Besides altered cuticle membranes, wax2 displayed postgenital fusion between aerial organs (especially in flower buds), reduced fertility under low humidity, increased epidermal permeability, and a reduction in stomatal index on adaxial and abaxial leaf surfaces. Thus, wax2 reveals a potential role for the cuticle as a suppressor of postgenital fusion and epidermal diffusion and as a mediator of both fertility and the development of epidermal architecture (via effects on stomatal index). The cloned WAX2 gene (verified by three independent allelic insertion mutants with identical phenotypes) codes for a predicted 632-amino acid integral membrane protein with a molecular mass of 72.3 kD and a theoretical pI of 8.78. WAX2 has six transmembrane domains, a His-rich diiron binding region at the N-terminal region, and a large soluble C-terminal domain. The N-terminal portion of WAX2 is homologous with members of the sterol desaturase family, whereas the C terminus of WAX2 is most similar to members of the short-chain dehydrogenase/reductase family. WAX2 has 32% identity to CER1, a protein required for wax production but not for cuticle membrane production. Based on these analyses, we predict that WAX2 has a metabolic function associated with both cuticle membrane and wax synthesis. These studies provide new insight into the genetics and biochemistry of plant cuticle production and elucidate new associations between the cuticle and diverse aspects of plant development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Epiderme Vegetal/metabolismo , Ceras/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Microscopia Eletrônica , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Mutação , Filogenia , Epiderme Vegetal/genética , Epiderme Vegetal/ultraestrutura , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...