Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Biol Cell ; 9(12): 3547-60, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9843587

RESUMO

Phosphoinositide signal transduction pathways in nuclei use enzymes that are indistinguishable from their cytosolic analogues. We demonstrate that distinct phosphatidylinositol phosphate kinases (PIPKs), the type I and type II isoforms, are concentrated in nuclei of mammalian cells. The cytosolic and nuclear PIPKs display comparable activities toward the substrates phosphatidylinositol 4-phosphate and phosphatidylinositol 3-phosphate. Indirect immunofluorescence revealed that these kinases were associated with distinct subnuclear domains, identified as "nuclear speckles," which also contained pre-mRNA processing factors. A pool of nuclear phosphatidylinositol bisphosphate (PIP2), the product of these kinases, was also detected at these same sites by monoclonal antibody staining. The localization of PIPKs and PIP2 to speckles is dynamic in that both PIPKs and PIP2 reorganize along with other speckle components upon inhibition of mRNA transcription. Because PIPKs have roles in the production of most phosphatidylinositol second messengers, these findings demonstrate that phosphatidylinositol signaling pathways are localized at nuclear speckles. Surprisingly, the PIPKs and PIP2 are not associated with invaginations of the nuclear envelope or any nuclear membrane structure. The putative absence of membranes at these sites suggests novel mechanisms for the generation of phosphoinositides within these structures.


Assuntos
Núcleo Celular/metabolismo , Fosfatidilinositóis/metabolismo , Precursores de RNA/metabolismo , Animais , Linhagem Celular , Núcleo Celular/enzimologia , Núcleo Celular/genética , Células HeLa , Humanos , Microscopia de Fluorescência , Membrana Nuclear/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Processamento Pós-Transcricional do RNA , Ratos , Transdução de Sinais , Transcrição Gênica
3.
Cell ; 94(6): 829-39, 1998 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-9753329

RESUMO

Phosphoinositide kinases play central roles in signal transduction by phosphorylating the inositol ring at specific positions. The structure of one such enzyme, type IIbeta phosphatidylinositol phosphate kinase, reveals a protein kinase ATP-binding core and demonstrates that all phosphoinositide kinases belong to one superfamily. The enzyme is a disc-shaped homodimer with a 33 x 48 A basic flat face that suggests an electrostatic mechanism for plasma membrane targeting. Conserved basic residues form a putative phosphatidylinositol phosphate specificity site. The substrate-binding site is open on one side, consistent with dual specificity for phosphatidylinositol 3- and 5-phosphates. A modeled complex with membrane-bound substrate and ATP shows how a phosphoinositide kinase can phosphorylate its substrate in situ at the membrane interface.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia , Dimerização , Escherichia coli , Dados de Sequência Molecular , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Frações Subcelulares/enzimologia , Especificidade por Substrato
4.
J Biol Chem ; 272(28): 17756-61, 1997 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-9211928

RESUMO

Phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) utilize phosphatidylinositols containing D-3-position phosphates as substrates to form phosphatidylinositol 3,4-bisphosphate. In addition, type I PIP5Ks phosphorylate phosphatidylinositol 3, 4-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate, while type II kinases have less activity toward this substrate. Remarkably, these kinases can convert phosphatidylinositol 3-phosphate to phosphatidylinositol 3,4,5-trisphosphate in a concerted reaction. Kinase activities toward the 3-position phosphoinositides are comparable with those seen with phosphatidylinositol 4-phosphate as the substrate. Therefore, the PIP5Ks can synthesize phosphatidylinositol 4,5-bisphosphate and two 3-phosphate-containing polyphosphoinositides. These unexpected activities position the PIP5Ks as potential participants in the generation of all polyphosphoinositide signaling molecules.


Assuntos
Isoenzimas/metabolismo , Fosfatidilinositóis/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Sinais Direcionadores de Proteínas/biossíntese , Animais , Células COS , Catálise , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Cinética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética
5.
J Biol Chem ; 272(9): 5861-70, 1997 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-9038203

RESUMO

Tumor necrosis factor-alpha (TNF-alpha) binding to its receptors leads to a diversity of biological responses. The actions of TNF are the result of the interaction of cytoplasmic proteins that bind directly to the intracellular domains of the two TNF receptors, p55 and p75. Here we report a novel interaction between the juxtamembrane region of the p55 TNF receptor and a newly discovered 47-kDa isoform of phosphatidylinositol-4-phosphate 5-kinase (PIP5K), a member of the enzyme family that generates the key signaling messenger, phosphatidylinositol 4,5-bisphosphate. The interaction was found to be specific for the p55 TNF receptor and was not observed with the p75 TNF receptor, the Fas antigen, or the p75 neurotrophin receptor, which are other members of the TNF receptor superfamily. In vitro experiments using recombinant fusion proteins verify the authenticity of the interaction between the p55 receptor and PIP5KIIbeta, a new isoform of PIP5K, but not the previously identified 53-kDa PIP5KIIalpha. Treatment of HeLa cells with TNF-alpha resulted in an increased PIP5K activity. These results indicate that phosphatidylinositol turnover may be linked to stimulation of the p55 TNF receptor and suggest that a subset of TNF responses may result from the direct association of PIP5KIIbeta with the p55 TNF receptor.


Assuntos
Antígenos CD/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Sequência de Aminoácidos , Sequência de Bases , DNA Complementar/química , Células HeLa , Humanos , Dados de Sequência Molecular , Receptores Tipo I de Fatores de Necrose Tumoral , Transdução de Sinais
6.
Adv Enzyme Regul ; 36: 115-40, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8869744

RESUMO

The existence of a PIP5K family of enzymes has been suggested by Western blotting and purification of numerous PIP5Ks from various tissues and cell types. The erythrocyte has at least two PIP5Ks, named PIP5KI and PIP5KII, while the brain appears to have even more isoforms. The cloning of the first PIP5K, the PIP5KII alpha, is just the beginning of the molecular classification of this protein family. The PIP5KII alpha sequence has shown that these enzymes lack obvious homology to protein, sugar and other lipid kinases. The identification of two S. cerevisiae homologues, Mss4p and Fab1p, confirms that this family of kinases is widely distributed in eukaryotes. Not surprisingly, cloning experiments have identified additional isoforms. By cloning additional isoforms, insights into the structure and functions of this family of enzymes will be gained. One reason for a large family of PIP5Ks is that many forms of regulation and cellular functions have been ascribed to PIP5Ks, as summarized in Figure 10. Some of these functional links result from PtdIns[4,5]P2 being required for a given process, but the direct involvement of specific PIP5Ks is not well defined. Which PIP5K isoforms are regulated by a specific mechanism or are involved in a cellular process often is not clear. For example, which PIP5Ks produce PtdIns[4,5]P2 that is hydrolyzed by PLC or phosphorylated by the PI 3-kinase is not known. A few exceptions are PIP5KII not being able to phosphorylate PtdIns[4,5]P2 in native membranes, and PIP5KIs being stimulated by PtdA, required for secretion, and possibly regulated by G proteins of the Rho subfamily. The multiplicity of regulation and functions of each PIP5K isoform remains to be elucidated. Another factor governing the number of isoforms may be presence of multiple pools of polyphosphoinositides and the localizing of PIP5K function within cells. The polyphosphoinositides appear to be compartmentalized within cells and each pool appears to be sensitive to specific signals. These polyphosphoinositide pools may include those in the plasma membrane that are used by PLC, nuclear pools that appear to turn over separately from cytoplasmic pools and a small pool at sites of vesicle fusion with the plasma membrane. Each pool may be controlled by a specific PIP5K isoform. This would explain the diversity of PIP5K cellular roles. Another possibility is that the PIP5Ks are localized to certain areas of the cell by being part of a protein or proteolipid complex. Furthermore, the presence of PITP or PLC in the complex would potentially impart specificity and speed on the use of PtdIns[4]P and PtdIns[4,5]P2 because these lipids could be channeled quickly from one enzyme to the next. The concept of localized complexes containing particular PIP5K isoforms that control the composition of different polyphosphoinositide pools will likely be important as the family of PIP5K isoforms grows.


Assuntos
Eritrócitos/enzimologia , Fosfatidilinositóis/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Proteínas de Ligação ao GTP/metabolismo , Humanos , Dados de Sequência Molecular , Ácidos Fosfatídicos/farmacologia , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/isolamento & purificação , Análise de Sequência , Homologia de Sequência de Aminoácidos
7.
Mol Biol Cell ; 6(5): 525-39, 1995 May.
Artigo em Inglês | MEDLINE | ID: mdl-7663021

RESUMO

The FAB1 gene of budding yeast is predicted to encode a protein of 257 kDa that exhibits significant sequence homology to a human type II PI(4)P 5-kinase (PIP5K-II). The recently cloned human PIP5K-II specifically converts PI(4)P to PI(4,5)P2 (Boronenkov and Anderson, 1995). The region of highest similarity between Fab1p and PIP5K-II includes a predicted nucleotide binding motif, which is likely to correspond to the catalytic domain of the protein. Interestingly, neither PIP5K-II nor Fab1p exhibit significant homology with cloned PI 3-kinases or PI 4-kinases. fab1 mutations result in the formation of aploid and binucleate cells (hence the name FAB). In addition, loss of Fab1p function causes defects in vacuole function and morphology, cell surface integrity, and cell growth. Experiments with a temperature conditional fab1 mutant revealed that their vacuoles rapidly (within 30 min) enlarge to more than double the size upon shifting cells to the nonpermissive temperature. Additional experiments with the fab1 ts mutant together with results obtained with fab1 vps (vacuolar protein sorting defective) double mutants indicate that the nuclear division and cell surface integrity defects observed in fab1 mutants are secondary to the vacuole morphology defects. Based on these data, we propose that Fab1p is a PI(4)P 5-kinase and that the product of the Fab1p reaction, PIP2, functions as an important regulator of vacuole homeostasis perhaps by controlling membrane flux to and/or from the vacuole. Furthermore, a comparison of the phenotypes of fab1 mutants and other yeast mutants affecting PI metabolism suggests that phosphoinositides may serve as general regulators of several different membrane trafficking pathways.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Homologia de Sequência de Aminoácidos , Vacúolos/fisiologia , Sequência de Aminoácidos , Aneuploidia , Carboxipeptidases/metabolismo , Catepsina A , Núcleo Celular , Cromossomos Fúngicos , Clonagem Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/fisiologia , Humanos , Dados de Sequência Molecular , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Análise de Sequência de DNA , Deleção de Sequência/fisiologia , Fuso Acromático
8.
J Biol Chem ; 270(7): 2881-4, 1995 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-7852364

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) occupies an essential position in the phosphoinositide signal transduction cascades as the precursor to second messengers and is thought to regulate many cellular proteins directly. The final step in the synthesis of PtdIns(4,5)P2 is the phosphorylation of PtdIns(4)P- by PtdIns(4)P 5-kinase (PIP5K). Using peptide sequences from a purified PIP5K, a cDNA for a human placental PIP5K was isolated and sequenced. Expression of this cDNA in Escherichia coli produced an active PIP5K. Surprisingly, the sequence of this PIP5K has no homology to known PtdIns kinases or protein kinases. However, the PIP5K is homologous to the Saccharomyces cerevisiae proteins Fab1p and Mss4p.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/química , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Complementar , Eritrócitos/enzimologia , Escherichia coli , Feminino , Humanos , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/isolamento & purificação , Placenta/enzimologia , Gravidez , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...