Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35629464

RESUMO

Large amounts of waste are derived not only from construction processes, but also the demolition of existing buildings. Such waste occupies large volumes in landfills, which makes its final disposal difficult and expensive. Reusing this waste type is generally limited to being employed as filler material or recycled aggregate in concrete, which limits its valorisation. The present work proposes reusing construction and demolition waste to manufacture alkali-activated cement to improve its sustainability and recovery. Construction and demolition waste (C&DW) from a demolition waste collection plant in Valencia (Spain) was physically and chemically characterised. This residue contained large fractions of concrete, mortar, bricks, and other ceramic materials. X-ray fluorescence (XRF) analysis showed that its chemical composition was mainly CaO, SiO2 and Al2O3. X-ray diffraction (XRD) analysis revealed that it presented some crystalline products, and quartz (SiO2) and calcite (CaCO3) were the main components. Blends of C&DW and blast furnace slag (BFS) were alkali-activated with mixtures of sodium hydroxide and sodium silicate. The corresponding pastes were characterised by techniques such as thermogravimetry and scanning electron microscopy (SEM). The alkali-activated mortars were prepared, and the resulting mortars' compressive strength was determined, which was as high as 58 MPa with the 50% C&DW-50% BFS mixture. This work concluded that it is possible to make new sustainable binders by the alkali activation of C&DW-BFS without using Portland cement.

2.
Materials (Basel) ; 7(11): 7533-7547, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-28788261

RESUMO

The use of methods based on measuring electrical conductivity to assess pozzolanic activity has recently been used primarily in aqueous suspensions of pozzolan: calcium hydroxide. However, the use of similar methods in suspensions of cement with pozzolans has not been widely studied. This paper proposes a new method for rapid assessment of the pozzolanic activity of mineral admixtures in aqueous cement suspensions. In this study, the conditions for the application of the method were optimized, such as time, temperature, w/c ratio and dosage procedure. Finally, results are presented from the application of this method for characterizing the pozzolanic activity of the spent catalytic cracking catalyst. These results corroborate as previously reported, namely the high reactivity of this pozzolan obtained by other methods, such as thermogravimetry or evolution of the mechanical strength. In addition, the pozzolanic activity of the catalyst was compared with other pozzolans such as metakaolin and silica fume.

3.
Materials (Basel) ; 7(4): 2561-2576, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28788583

RESUMO

The pozzolanic activity of the spent catalyst produced by fluid catalytic cracking (FCC) has been studied by various methods in recent years. However, no quick and easy method has been reported for this activity based on the associated studies. In this work, the pozzolanic activity of a spent catalyst was investigated by measuring its electrical conductivity in aqueous suspensions of pozzolan/calcium hydroxide. The behavior of the FCC catalyst residue was compared to that of reactive and inert materials of similar chemical compositions. Further, the influence of temperature on the suspension was studied, and also, a new method was proposed in which the pozzolan/calcium hydroxide ratio was varied (with the initial presence of solid Ca(OH)2 in the system). It was concluded that the method is effective, fast and simple for evaluating the high reactivity of the catalyst. Therefore, this method is an alternative for the evaluation of the reactivity of pozzolanic materials.

4.
Materials (Basel) ; 6(8): 3108-3127, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28811425

RESUMO

Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter (ca. 25%). Solutions of sodium hydroxide and sodium silicate were used as activating reagents. Different BFS/SCBA mixtures were studied, replacing part of the BFS by SCBA from 0 to 40% by weight. The mechanical strength of mortar was measured, obtaining values about 60 MPa of compressive strength for BFS/SCBA systems after 270 days of curing at 20 °C. Also, microstructural properties were assessed by means of SEM, TGA, XRD, pH, electrical conductivity, FTIR spectroscopy and MIP. Results showed a good stability of matrices developed by means of alkali-activation. It was demonstrated that sugar cane bagasse ash is an interesting source for preparing alkali-activated binders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...