Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(2): 023601, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32004051

RESUMO

Recent optomechanical experiments have observed nonclassical properties in macroscopic mechanical oscillators. A key indicator of such properties is the asymmetry in the strength of the motional sidebands produced in the probe electromagnetic field, which is originated by the noncommutativity between the oscillator ladder operators. Here we extend the analysis to a squeezed state of an oscillator embedded in an optical cavity, produced by the parametric effect originated by a suitable combination of optical fields. The motional sidebands assume a peculiar shape, related to the modified system dynamics, with asymmetric features revealing and quantifying the quantum component of the squeezed oscillator motion.

2.
Phys Rev Lett ; 116(10): 103601, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-27015479

RESUMO

We report the experimental observation of two-mode squeezing in the oscillation quadratures of a thermal micro-oscillator. This effect is obtained by parametric modulation of the optical spring in a cavity optomechanical system. In addition to stationary variance measurements, we describe the dynamic behavior in the regime of pulsed parametric excitation, showing an enhanced squeezing effect surpassing the stationary 3 dB limit. While the present experiment is in the classical regime, our technique can be exploited to produce entangled, macroscopic quantum optomechanical modes.

3.
Phys Rev Lett ; 112(2): 023601, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24484010

RESUMO

We report the confinement of an optomechanical micro-oscillator in a squeezed thermal state, obtained by parametric modulation of the optical spring. We propose and implement an experimental scheme based on parametric feedback control of the oscillator, which stabilizes the amplified quadrature while leaving the orthogonal one unaffected. This technique allows us to surpass the -3 dB limit in the noise reduction, associated with parametric resonance, with a best experimental result of -7.4 dB. While the present experiment is in the classical regime, in a moderately cooled system our technique may allow squeezing of a macroscopic mechanical oscillator below the zero-point motion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA