Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 26(26): 27291-27304, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31321729

RESUMO

Macroporous resin-supported reagents have been identified as potential adsorbents for removal of toxic pollutants. This article presents an experimental designed to evaluate the sorption and desorption of nickel(II) with the help of column and batch procedure using simple extractant-impregnated resin (EIR). Isonitroso-4-methyl-2-pentanone (IMP) as an extractant was impregnated on a solid support like Amberlite XAD-4 to prepare the EIR sorbent. Column experimental conditions such as pH, sample flow rate and volume, eluting solution, and interfering ions were studied to optimize the nickel(II) sorption and recovery from aqueous media. The column results suggest that the quantitative nickel(II) sorption was observed at pH 5-6, and the quantitative recovery (≥ 95%) was achieved by using 1.0 M HNO3. The high concentrations of cations and anions (except EDTA) present in the spiked binary and multi-element mixture solution show no interferences in both quantitative sorption and recovery of nickel(II), whereas the batch experiments were performed to evaluate nickel(II) sorption behavior using the linearized and non-linearized kinetic and isotherm models. By error function analysis, the Freundlich isotherm and the pseudo-first-order kinetic model were found to describe best the experimental data obtained over the studied concentration range and sorption time, respectively. The maximum sorption capacity of nickel(II) onto the EIR sorbent was found to be ~ 81 mg/g. The mean free energy (E = 10.1 kJ/mol) determined using Dubinin-Radushkevich isotherm suggests chemical nature of nickel(II) sorption on EIR. The novelty of the EIR adsorbent lies in its potential for separation and recovery of nickel(II) at trace level in water samples of different origin.


Assuntos
Níquel/análise , Poliestirenos/química , Polivinil/química , Resinas Vegetais/química , Adsorção , Íons , Cinética , Níquel/química , Termodinâmica , Poluentes Químicos da Água/análise
2.
Environ Sci Pollut Res Int ; 25(11): 10911-10925, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29397510

RESUMO

In this study, Lagerstroemia speciosa biomass modified by polyethylenimine (PEI-LS) was developed as a potential biosorbent for sorption and recovery of platinum(II) from platinum bearing waste solutions. Batch experiments were conducted to study the effect of various parameters on the sorption and recovery of platinum(II) using PEI-LS. The equilibrium time for platinum(II) sorption process was found to be 6 h. Both the sorption kinetics and sorption isotherm data fits pseudo second-order kinetic model and Langmuir isotherm, respectively. The maximum sorption capacity of platinum(II) onto PEI-LS at pH 2 for the studied temperature range (25-45 °C) is in the range of 122-154 mg/g. Evaluation of thermodynamic parameters suggests that the platinum(II) sorption is spontaneous and endothermic in nature. The regeneration of PEI-LS can be achieved using acidic thiourea as an eluent for recovery of platinum from the biosorbent. Fourier transform infrared (FT-IR) analysis suggests many functional groups were involved in platinum(II) sorption onto PEI-LS. Both the scanning electron microscope/energy dispersive spectroscopy (SEM/EDS) and X-ray photoelectron spectroscopy (XPS) analysis suggest a successful modification of raw biomass with PEI. The XPS analysis further concludes that platinum(II) sorption is governed by ion-exchange and co-ordination reaction. Finally, the PEI-LS was shown to recover ≥ 90% of platinum from two simulated solutions: the acid-leached spent catalyst solution and refinery wastewater. The biosorbent developed in this study is a low-cost and eco-friendly media that can be effectively used for platinum recovery from industrial wastewater.


Assuntos
Lagerstroemia/química , Platina/análise , Polietilenoimina/química , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Adsorção , Biomassa , Cinética , Indústria de Petróleo e Gás , Folhas de Planta/química , Pós , Termodinâmica
3.
J Environ Sci (China) ; 55: 236-246, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28477818

RESUMO

We report a rapid method of green chemistry approach for synthesis of gold nanoparticles (AuNPs) using Lagerstroemia speciosa leaf extract (LSE). L. speciosa plant extract is known for its effective treatment of diabetes and kidney related problems. The green synthesis of AuNPs was complete within 30min at 25°C. The same could also be achieved within 2min at a higher reaction temperature (80°C). Both UV-visible spectroscopy and transmission electron microscopy results suggest that the morphology and size distribution of AuNPs are dependent on the pH of gold solution, gold concentration, volume of LSE, and reaction time and temperature. Comparison between Fourier transform infrared spectroscopy (FT-IR) spectra of LSE and the synthesized AuNPs indicate an active role of polyphenolic functional groups (from gallotannins, lagerstroemin, and corosolic acid) in the green synthesis and capping of AuNPs. The green route synthesized AuNPs show strong photocatalytic activity in the reduction of dyes viz., methylene blue, methyl orange, bromophenol blue and bromocresol green, and 4-nitrophenol under visible light in the presence of NaBH4. The non-toxic and cost effective LSE mediated AuNPs synthesis proposed in this study is extremely rapid compared to the other reported methods that require hours to days for complete synthesis of AuNPs using various plant extracts. Strong and stable photocatalytic behavior makes AuNPs attractive in environmental applications, particularly in the reduction of organic pollutants in wastewater.


Assuntos
Ouro/química , Química Verde , Nanopartículas Metálicas/química , Modelos Químicos , Compostos Orgânicos/química , Poluentes Químicos da Água/química , Luz
4.
Amino Acids ; 47(4): 757-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25618751

RESUMO

Simple and eco-friendly biosynthesis approach was developed to synthesize silver nanoparticles (SNPs) and gold nanoparticles (GNPs) using Ficus racemosa latex as reducing agent. The presence of sunlight is utilized with latex and achieved the nanoparticles whose average size was in the range of 50-120 nm for SNPs and 20-50 nm for GNPs. The synthesized nanoparticles were characterized by UV/Visible absorption spectroscopy, X-ray diffraction, and field emission-scanning electron microscopy techniques toget understand the obtained nanoparticles. The pH-dependent binding studies of SNPs and GNPs with four amino acids, namely L-lysine, L-arginine, L-glutamine and glycin have been reported.


Assuntos
Arginina/química , Ficus/química , Glutamina/química , Glicina/química , Química Verde/métodos , Látex/química , Lisina/química , Nanopartículas Metálicas/química , Ouro/química , Tamanho da Partícula , Prata/química , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...