Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metabolomics ; 11(5): 1157-1174, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26366134

RESUMO

Systemic lupus erythematosus (SLE) patients exhibit depletion of the intracellular antioxidant glutathione and downstream activation of the metabolic sensor, mechanistic target of rapamycin (mTOR). Since reversal of glutathione depletion by the amino acid precursor, N-acetylcysteine (NAC), is therapeutic in SLE, its mechanism of impact on the metabolome was examined within the context of a double-blind placebo-controlled trial. Quantitative metabolome profiling of peripheral blood lymphocytes (PBL) was performed in 36 SLE patients and 42 healthy controls matched for age, gender, and ethnicity of patients using mass spectrometry that covers all major metabolic pathways. mTOR activity was assessed by western blot and flow cytometry. Metabolome changes in lupus PBL affected 27 of 80 KEGG pathways at FDR p < 0.05 with most prominent impact on the pentose phosphate pathway (PPP). While cysteine was depleted, cystine, kynurenine, cytosine, and dCTP were the most increased metabolites. Area under the receiver operating characteristic curve (AUC) logistic regression approach identified kynurenine (AUC = 0.859), dCTP (AUC = 0.762), and methionine sulfoxide (AUC = 0.708), as top predictors of SLE. Kynurenine was the top predictor of NAC effect in SLE (AUC = 0.851). NAC treatment significantly reduced kynurenine levels relative to placebo in vivo (raw p = 2.8 × 10-7, FDR corrected p = 6.6 × 10-5). Kynurenine stimulated mTOR activity in healthy control PBL in vitro. Metabolome changes in lupus PBL reveal a dominant impact on the PPP that reflect greater demand for nucleotides and oxidative stress. The PPP-connected and NAC-responsive accumulation of kynurenine and its stimulation of mTOR are identified as novel metabolic checkpoints in lupus pathogenesis.

2.
J Immunol ; 191(5): 2236-46, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23913957

RESUMO

The mechanistic target of rapamycin (mTOR) is recognized as a sensor of mitochondrial dysfunction and effector of T cell lineage development; however, its role in autoimmunity, including systemic lupus erythematosus, remains unclear. In this study, we prospectively evaluated mitochondrial dysfunction and mTOR activation in PBLs relative to the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) during 274 visits of 59 patients and 54 matched healthy subjects. Partial least square-discriminant analysis identified 15 of 212 parameters that accounted for 70.2% of the total variance and discriminated lupus and control samples (p < 0.0005); increased mitochondrial mass of CD3(+)/CD4(-)/CD8(-) double-negative (DN) T cells (p = 1.1 × 10(-22)) and FOXP3 depletion in CD4(+)/CD25(+) T cells were top contributors (p = 6.7 × 10(-7)). Prominent necrosis and mTOR activation were noted in DN T cells during 15 visits characterized by flares (SLEDAI increase ≥ 4) relative to 61 visits of remission (SLEDAI decrease ≥ 4). mTOR activation in DN T cells was also noted at preflare visits of SLE patients relative to those with stable disease or healthy controls. DN lupus T cells showed increased production of IL-4, which correlated with depletion of CD25(+)/CD19(+) B cells. Rapamycin treatment in vivo blocked the IL-4 production and necrosis of DN T cells, increased the expression of FOXP3 in CD25(+)/CD4(+) T cells, and expanded CD25(+)/CD19(+) B cells. These results identify mTOR activation to be a trigger of IL-4 production and necrotic death of DN T cells in patients with SLE.


Assuntos
Interleucina-4/normas , Lúpus Eritematoso Sistêmico/imunologia , Linfócitos T/imunologia , Serina-Treonina Quinases TOR/imunologia , Adulto , Idoso , Ensaios Clínicos como Assunto , Feminino , Citometria de Fluxo , Humanos , Imunossupressores/uso terapêutico , Interleucina-4/biossíntese , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Masculino , Pessoa de Meia-Idade , Necrose , Sirolimo/uso terapêutico , Linfócitos T/metabolismo , Linfócitos T/patologia , Serina-Treonina Quinases TOR/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA