Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Cancer Res ; 11(9): 4607-4623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659909

RESUMO

The H3K27M oncohistone mutation, identified in approximately 80% of diffuse intrinsic pontine gliomas (DIPG), is a potential target for therapy. Imipridone ONC201/TIC10 (TRAIL-Inducing Compound #10) induces apoptosis of cancer cells, and has clinical efficacy against H3K27M-mutant DIPG. We demonstrate synergy between ONC201, ONC206 and ONC212, and targeted therapies with known preclinical activity against DIPG. We hypothesized that imipridone combinations with HDAC or proteasome inhibitors may be superior to single agent ONC201 treatment in H3K27M mutant DIPG. Six patient-derived DIPG cell lines (SU-DIPG-IV, SU-DIPG-13, SU-DIPG-25, SU-DIPG-27, SU-DIPG-29, SU-DIPG-36) were exposed to imipridones alone or combinations with histone de-acetylase inhibitors [HDACi], marizomib, etoposide, and temozolomide. Dose-dependent response to imipridones was observed in DIPG cells with half-maximal inhibitory concentration (IC50) of 1.46 µM, 0.11 µM, and 0.03 µM, for ONC201, ONC206, and ONC212, respectively. Upon treatment with the imipridones, DIPG cell lines engaged CLpP/CLPX, the integrated stress response with ATF4 activation, and TRAIL death receptor 5 (DR5) induction. Strong synergy was identified between ONC201 and HDACi panobinostat (combination index [CI] 0.01), romidepsin (CI 0.08) and proteasome inhibitor marizomib (CI 0.19). Synergy was demonstrated between ONC201 and etoposide (CI 0.54), although to a lesser degree than with panobinostat, romidepsin, and marizomib. ONC206 and ONC212 showed similar synergistic effects with panobinostat, romidepsin, and marizomib. Induction of apoptosis was demonstrated with imipridones and panobinostat or romidepsin combinations. Our results suggest increased sensitivity of H3K27M-mutant DIPG cell lines to second generation imipridone therapies, as compared to ONC201. Additionally, there is synergistic cell death with combination of imipridones and panobinostat, romidepsin, or marizomib, which may be further tested in vivo and in clinical trials.

2.
Neoplasia ; 23(8): 792-810, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34246076

RESUMO

ONC201/TIC10 activates TRAIL signaling through ATF4 and the integrated stress response (ISR). ONC201 demonstrated tumor regressions and disease stability in patients with histone H3K27M-mutated midline-glioma. H3K27M-mutation prevents H3K27-methylation on the mutated allele. EZH2 inhibitors (EZH2i) reduce H3K27 methylation and have anti-tumor effects. We hypothesized ONC201 sensitivity and tumor apoptosis may increase by reducing H3K27-methylation with EZH2i or HDACi as mimics of H3K27M-mutation. EZH2i EPZ-6438 (tazemetostat) or PF-06821497 and HDACi vorinostat were combined with ONC201 to treat multiple cancer cell lines and cell viability and histone modifications were analyzed. We observed synergistic effects towards cell viability in multiple cancers by EPZ-6438 or PF-06821497 plus ONC201 or triple therapy with vorinostat, EPZ-6438, and ONC201. EPZ-6438 and vorinostat synergized with ONC201 to enhance apoptosis. Activation of the ISR and TRAIL-DR5 were observed in cells treated with ONC201 -/+ epigenetic modulators. Knockdown of ATF4 reduced DR5 induction and apoptosis following EZH2i and ONC201 treatment of U251 glioma cells. mRNA expression of dopamine-receptors did not correlate with ONC201 sensitivity in the tumor cell lines tested (N = 12), including changes after epigenetic drugs. Dopamine did not rescue apoptosis by ONC201 in different tumor cell lines (N = 10) including 2 GBM, 3 DIPG and did not prevent DR5 activation or apoptosis. DRD2 agonist sumanirole did not protect brain tumor cells (N = 6 including 4 DIPG cell lines) from ONC201 reduction in viability. Although synergy was observed with ONC201 and vorinostat, there was no significant increase in H3K27 acetylation in cell lines including DIPG as compared to vorinostat alone, and in some cases the acetylation was less than vorinostat alone at 72 H. H3K27 methylation reduction correlated with synergy from combinations of either EPZ-6438 or vorinostat with ONC201 or triple combination. Our findings provide a rationale for combination of ONC201 and epigenetic modulators including triple therapy for in vivo and clinical testing in treatment of human malignancies including brain tumors and DIPG.


Assuntos
Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Compostos de Bifenilo/farmacologia , Endopeptidase Clp/metabolismo , Histonas/metabolismo , Imidazóis/farmacologia , Morfolinas/farmacologia , Piridinas/farmacologia , Piridonas/farmacologia , Pirimidinas/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Vorinostat/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Metilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
3.
Neoplasia ; 22(12): 725-744, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33142238

RESUMO

ONC201 was originally discovered as TNF-Related Apoptosis Inducing Ligand (TRAIL)-inducing compound TIC10. ONC201 appears to act as a selective antagonist of the G protein coupled receptor (GPCR) dopamine receptor D2 (DRD2), and as an allosteric agonist of mitochondrial protease caseinolytic protease P (ClpP). Downstream of target engagement, ONC201 activates the ATF4/CHOP-mediated integrated stress response leading to TRAIL/Death Receptor 5 (DR5) activation, inhibits oxidative phosphorylation via c-myc, and inactivates Akt/ERK signaling in tumor cells. This typically results in DR5/TRAIL-mediated apoptosis of tumor cells; however, DR5/TRAIL-independent apoptosis, cell cycle arrest, or antiproliferative effects also occur. The effects of ONC201 extend beyond bulk tumor cells to include cancer stem cells, cancer associated fibroblasts and immune cells within the tumor microenvironment that can contribute to its efficacy. ONC201 is orally administered, crosses the intact blood brain barrier, and is under evaluation in clinical trials in patients with advanced solid tumors and hematological malignancies. ONC201 has single agent clinical activity in tumor types that are enriched for DRD2 and/or ClpP expression including specific subtypes of high-grade glioma, endometrial cancer, prostate cancer, mantle cell lymphoma, and adrenal tumors. Synergy with radiation, chemotherapy, targeted therapy and immune-checkpoint agents has been identified in preclinical models and is being evaluated in clinical trials. Structure-activity relationships based on the core pharmacophore of ONC201, termed the imipridone scaffold, revealed novel potent compounds that are being developed. Imipridones represent a novel approach to therapeutically target previously undruggable GPCRs, ClpP, and innate immune pathways in oncology.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Estudos Clínicos como Assunto , Ensaios Clínicos como Assunto , Suscetibilidade a Doenças , Avaliação Pré-Clínica de Medicamentos , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Piridinas/uso terapêutico , Pirimidinas/uso terapêutico , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Resultado do Tratamento
4.
Case Rep Oncol ; 13(1): 266-270, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308588

RESUMO

Approximately 24% of all pediatric acute myeloid leukemia (AML) cases have mutations in the FMS-like tyrosine kinase 3 (FLT3) receptor gene. FLT3-TKD point mutations are rare in pediatrics and often occur in younger patients and in combination with 11q23 abnormalities. There is a paucity of data related to their prognostic implications in children. We describe 2 pediatric patients with FLT3-activating mutations as a feature of their AML. Both were diagnosed in infancy. The first experienced induction failure and had refractory disease without expression of FLT3-TKD mutation on subsequent bone marrow evaluations. His disease also harbored a KMT2A-PICALM gene rearrangement. He died of invasive fungal disease nine months after diagnosis. The second had a post-induction remission but developed swelling of the left calcaneus shown on biopsy to be a myeloid sarcoma positive for a new BRAF V600E mutation in addition to his known KMT2A rearrangement but without FLT3-TKD mutation. Despite multiple courses of therapy including BRAF/MEK-inhibition, he died of progressive disease nine months after diagnosis. FLT3 inhibition was not utilized in either patient as studies have largely focused on its role in internal tandem duplication (ITD) mutations and because the mutation was no longer detectable in either patient on subsequent evaluation. However, these cases add to the suggestion that these mutations confer a worse prognosis in pediatric AML patients.

5.
J Immigr Minor Health ; 22(1): 34-43, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30895418

RESUMO

Lead is a major environmental toxin that presents numerous health consequences for children. Refugee children are at a risk of lead poisoning post-resettlement due to urban housing and environmental inequalities stemming from lack of funding, legislation, and advocacy. This article addresses lead exposure upon arrival and post-resettlement in 705 refugee children (age 0-16 years) attending a university clinic in Syracuse, NY, a city with a large refugee population. 17% of the newly arrived children had elevated blood lead levels (BLLs) (≥ 5 µg/dL); 10% had elevated BLL upon follow-up; 8.3% of the children's follow-up elevated BLL were new exposures. 30% were found to have increased BLL at follow-up regardless of arrival status. An analysis of new exposures found a significant proportion of children would have been missed on routine screening that targets children < 2 years old. Primary prevention efforts are needed to prevent exposure and address risks to improve the health of all children locally, including newly resettled refugees.


Assuntos
Chumbo/sangue , Refugiados/psicologia , Adolescente , Fatores Etários , Criança , Pré-Escolar , Estudos Transversais , Feminino , Hemoglobinas/análise , Humanos , Lactente , Masculino , New York/epidemiologia , Estudos Retrospectivos , Fatores Sexuais , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...