Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Oral Investig ; 28(7): 358, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842694

RESUMO

OBJECTIVES: To establish an analysis pipeline for the volumetric evaluation of the osteotomy site after bilateral sagittal split osteotomy (BSSO). PATIENTS AND METHODS: Cone-beam computed tomography (CBCT) was performed before, directly after BSSO, and 6-12 months after surgery. Image segmentations of each osteotomy gap data set were performed manually by four physicians and were compared to a semi-automatic segmentation approach. RESULTS: Five patients with a total of ten osteotomy gaps were included. The mean interclass correlation coefficient (ICC) of individual patients was 0.782 and the standard deviation 0.080 when using the manual segmentation approach. However, the mean ICC of the evaluation of anatomical sites and time points separately was 0.214, suggesting a large range of deviation within the manual segmentation of each rater. The standard deviation was 0.355, further highlighting the extent of the variation. In contrast, the semi-automatic approach had a mean ICC of 0.491 and a standard deviation of 0.365, which suggests a relatively higher agreement among the operators compared to the manual segmentation approach. Furthermore, the volume of the osteotomy gap in the semi-automatic approach showed the same tendency in every site as the manual segmentation approach, but with less deviation. CONCLUSION: The semi-automatic approach developed in the present study proved to be valid as a standardised method with high repeatability. Such image analysis methods could help to quantify the progression of bone healing after BSSO and beyond, eventually facilitating the earlier identification of patients with retarded healing.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Osteotomia Sagital do Ramo Mandibular , Humanos , Tomografia Computadorizada de Feixe Cônico/métodos , Projetos Piloto , Osteotomia Sagital do Ramo Mandibular/métodos , Feminino , Masculino , Adulto , Resultado do Tratamento
2.
Front Bioeng Biotechnol ; 11: 1264409, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026873

RESUMO

In musculoskeletal surgery, the treatment of large bone defects is challenging and can require the use of bone graft substitutes to restore mechanical stability and promote host-mediated regeneration. The use of bone allografts is well-established in many bone regenerative procedures, but is associated with low rates of ingrowth due to pre-therapeutic graft processing. Cold physical plasma (CPP), a partially ionized gas that simultaneously generates reactive oxygen (O2) and nitrogen (N2) species, is suggested to be advantageous in biomedical implant processing. CPP is a promising tool in allograft processing for improving surface characteristics of bone allografts towards enhanced cellularization and osteoconduction. However, a preclinical assessment regarding the feasibility of pre-therapeutic processing of allogeneic bone grafts with CPP has not yet been performed. Thus, this pilot study aimed to analyze the bone morphology of CPP processed allografts using synchrotron radiation-based microcomputed tomography (SR-µCT) and to analyze the effects of CPP processing on human bone cell viability and function. The analyzes, including co-registration of pre- and post-treatment SR-µCT scans, revealed that the main bone morphological properties (total volume, mineralized volume, surface area, and porosity) remained unaffected by CPP treatment if compared to allografts not treated with CPP. Varying effects on cellular metabolic activity and alkaline phosphatase activity were found in response to different gas mixtures and treatment durations employed for CPP application. It was found that 3 min CPP treatment using a He + 0.1% N2 gas mixture led to the most favourable outcome regarding a significant increase in bone cell viability and alkaline phosphatase activity. This study highlights the promising potential of pre-therapeuthic bone allograft processing by CPP prior to intraoperative application and emphasizes the need for gas source and treatment time optimization for specific applications.

3.
Front Bioeng Biotechnol ; 11: 1169385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691907

RESUMO

Introduction: Autologous bone transplantation is successfully used in reconstructive surgery of large/critical-sized bone defects, whereby the microvascular free fibula flap is still regarded as the gold standard for the reconstruction of such defects in the head and neck region. Here, we report the morphological and lacunar properties of patient-paired bone samples from eight patients from the jaw (AB; recipient site) and the fibula (FB; donor site) on the micron length-scale using Synchrotron µ-CT. Insights into differences and similarities between these bone structures could offer a better understanding of the underlying mechanism for successful surgical outcomes and might clear the path for optimized, nature-inspired bone scaffold designs. Methods: Spatial vessel-pore arrangements, bone morphology, fluid-simulation derived permeability tensor, osteocyte lacunar density, and lacunar morphology are compared. Results: The orientation of the vessel system indicates a homogenous vessel orientation for AB and FB. The average mineral distance (50%) to the closest vessel boundary is higher in AB than in FB (the mean is 96 µm for AB vs. 76 µm for FB; p = 0.021). Average osteocyte lacunar density is found to be higher in AB than in FB (mean 22,874 mm3 vs. 19,376 mm3 for FB; p = 0.038), which might compensate for the high distance from the mineral to the nearest vessel. No significant differences in lacunar volume are found between paired AB and FB. Discussion: A comparable vessel network and similar distribution of vessel porosity between AB and FB may allow the FB graft to exhibit a high regeneration potential when connected to AB, and this might correlate with a high osteoinductive and osteoconductive potential of FB when connected to AB. Since widely used and potent synthetic bone grafts exist, new insight into the bone structure of well-established autologous bone grafts, such as the free fibula flap, could help to improve the performance of such materials and therefore the design of 3D scaffolds.

4.
Front Bioeng Biotechnol ; 10: 862395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782504

RESUMO

In oral- and maxillofacial bone augmentation surgery, non-vascularized grafts from the iliac crest demonstrate better clinical performance than alveolar bone grafts. The underlying mechanisms are not fully understood but are essential for the enhancement of bone regeneration scaffolds. Synchrotron Radiation µ-CT at a pixel size of 2.3 µm was used to characterize the gross morphology and the vascular and osteocyte lacuna porosity of patient-matched iliac crest/alveolar bone samples. The results suggest a difference in the spatial distribution of the vascular pore system. Fluid simulations reveal the permeability tensor to be more homogeneous in the iliac crest, indicating a more unidirectional fluid flow in alveolar bone. The average distance between bone mineral and the closest vessel pore boundary was found to be higher in alveolar bone. At the same time, osteocyte lacunae density is higher in alveolar bone, potentially compensating for the longer average distance between the bone mineral and vessel pores. The present study comprehensively quantified and compared the 3D microarchitecture of intraindividual human alveolar and iliac bone. The identified difference in pore network architecture may allow a bone graft from the iliac crest to exhibit higher regeneration potential due to an increased capacity to connect with the surrounding pore network of the residual bone. The results may contribute to understanding the difference in clinical performance when used as bone grafts and are essential for optimization of future scaffold materials.

5.
Bioact Mater ; 14: 152-168, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35310351

RESUMO

Barrier membranes are commonly used as part of the dental surgical technique guided bone regeneration (GBR) and are often made of resorbable collagen or non-resorbable materials such as PTFE. While collagen membranes do not provide sufficient mechanical protection of the covered bone defect, titanium reinforced membranes and non-resorbable membranes need to be removed in a second surgery. Thus, biodegradable GBR membranes made of pure magnesium might be an alternative. In this study a biodegradable pure magnesium (99.95%) membrane has been proven to have all of the necessary requirements for an optimal regenerative outcome from both a mechanical and biological perspective. After implantation, the magnesium membrane separates the regenerating bone from the overlying, faster proliferating soft tissue. During the initial healing period, the membrane maintained a barrier function and space provision, whilst retaining the positioning of the bone graft material within the defect space. As the magnesium metal corroded, it formed a salty corrosion layer and local gas cavities, both of which extended the functional lifespan of the membrane barrier capabilities. During the resorption of the magnesium metal and magnesium salts, it was observed that the membrane became surrounded and then replaced by new bone. After the membrane had completely resorbed, only healthy tissue remained. The in vivo performance study demonstrated that the magnesium membrane has a comparable healing response and tissue regeneration to that of a resorbable collagen membrane. Overall, the magnesium membrane demonstrated all of the ideal qualities for a barrier membrane used in GBR treatment.

6.
Bioact Mater ; 14: 15-30, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35310352

RESUMO

An ideal fixation system for guided bone (GBR) regeneration in oral surgery must fulfil several criteria that includes the provision of adequate mechanical fixation, complete resorption when no longer needed, complete replacement by bone, as well as be biocompatible and have a good clinical manageability. For the first time, a biodegradable magnesium fixation screw made of the magnesium alloy WZM211 with a MgF2 coating has been designed and tested to fulfill these criteria. Adequate mechanical fixation was shown for the magnesium fixation screw in several benchtop tests that directly compared the magnesium fixation screw with an equivalent polymeric resorbable device. Results demonstrated slightly superior mechanical properties of the magnesium device in comparison to the polymeric device even after 4 weeks of degradation. Biocompatibility of the magnesium fixation screw was demonstrated in several in vitro and in vivo tests. Degradation of the magnesium screw was investigated in in vitro and in vivo tests, where it was found that the screw is resorbed slowly and completely after 52 weeks, providing adequate fixation in the early critical healing phase. Overall, the magnesium fixation screw demonstrates all of the key properties required for an ideal fixation screw of membranes used in guided bone regeneration (GBR) surgeries.

7.
J Hazard Mater ; 430: 128356, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35149499

RESUMO

Despite the increasing attention given to the impacts of nanoplastics in terrestrial environments, there is limited data about the effects on plants, and the quantitative information on uptake. In the present study, wheat plants grown in hydroponics were exposed to Pd-doped nanoplastics. This allowed us to quantify nanoplastics uptake and translocation to the shoots. Visualization of nanoplastics in roots was performed with synchrotron micro X-ray fluorescence (µXRF). Nanoplastics accumulated on the root epidermis, especially at the root tip and in root maturation zones. A close relationship between plant roots, rhizodeposits and nanoplastics behaviour was shown. Reinforcement of the cell wall in roots was evidenced using Fourier transform infrared spectroscopy (FTIR) and synchrotron-computed microtomography (µCT). Synchrotron-computed nanotomography (nanoCT) evidenced the presence of globular structures but they could not be identified as nanoplastics since they were observed both in the control and treated roots. By utilizing the inorganic tracer in the doped-nanoplastics, this study paves the road for elucidating interactions in more complex systems by using an integrative approach combining classical phytotoxicity markers with advanced nanometrology techniques.


Assuntos
Microplásticos , Plântula , Transporte Biológico , Hidroponia , Microplásticos/toxicidade , Raízes de Plantas/química , Triticum
8.
Acta Biomater ; 86: 429-440, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605771

RESUMO

At birth, mouse vertebrae have a reticular fine spongy morphology, yet in the adult animal they exhibit elaborate trabecular architectures. Here, we characterize the physiological microstructural transformations in growing young female mice of the widely used C57BL/6 strain. Extensive architectural changes lead to the establishment of mature cancellous bone in the spine. Vertebrae were mapped in 3D by high resolution microcomputed tomography (µCT), backed by conventional histology. Three different phases are observed in the natural bony biomaterial: In a prenatal templating phase, early vertebrae are composed of foamy, loosely-packed mineralized spicules. During a consolidation phase in the first 7 days after birth, bone material condenses into struts and forms primitive trabeculae accompanied by a significant (>50%) reduction in bone volume/tissue volume ratio (BV/TV). After day 7, the trabeculae expand, reorient and increase in mineral density. Swift growth ensues such that by day 14 the young lumbar spine exhibits all morphological features observed in the mature animal. The greatly varied micro-morphologies of normal trabecular bone observed in 3D within a short timespan are typical for rodent and presumably for other mammalian forming spines. This suggests that fully structured cancellous bone emerges through rapid post-natal restructuring of a foamy mineralized scaffold. STATEMENT OF SIGNIFICANCE: Cancellous bone develops in stages that are not well documented. Using a mouse model, we provide an observer-independent quantification of normal bone formation in the spine. We find that within 14 days, the cancellous bone transforms in 3 phases from a scaffold of spicules into well organized, fully mineralized trabeculae in a functional spine. Detailed knowledge of the physiological restructuring of mineralized material may help to better understand bone formation and may serve as a blueprint for studies of pharmaceuticals effects, tissue healing and regeneration.


Assuntos
Calcificação Fisiológica , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/crescimento & desenvolvimento , Imageamento Tridimensional , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/crescimento & desenvolvimento , Animais , Anisotropia , Densidade Óssea , Feminino , Camundongos Endogâmicos C57BL , Fatores de Tempo , Microtomografia por Raio-X
9.
Proc Natl Acad Sci U S A ; 114(40): 10542-10547, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923958

RESUMO

Skeletal metastases, the leading cause of death in advanced breast cancer patients, depend on tumor cell interactions with the mineralized bone extracellular matrix. Bone mineral is largely composed of hydroxyapatite (HA) nanocrystals with physicochemical properties that vary significantly by anatomical location, age, and pathology. However, it remains unclear whether bone regions typically targeted by metastatic breast cancer feature distinct HA materials properties. Here we combined high-resolution X-ray scattering analysis with large-area Raman imaging, backscattered electron microscopy, histopathology, and microcomputed tomography to characterize HA in mouse models of advanced breast cancer in relevant skeletal locations. The proximal tibial metaphysis served as a common metastatic site in our studies; we identified that in disease-free bones this skeletal region contained smaller and less-oriented HA nanocrystals relative to ones that constitute the diaphysis. We further observed that osteolytic bone metastasis led to a decrease in HA nanocrystal size and perfection in remnant metaphyseal trabecular bone. Interestingly, in a model of localized breast cancer, metaphyseal HA nanocrystals were also smaller and less perfect than in corresponding bone in disease-free controls. Collectively, these results suggest that skeletal sites prone to tumor cell dissemination contain less-mature HA (i.e., smaller, less-perfect, and less-oriented crystals) and that primary tumors can further increase HA immaturity even before secondary tumor formation, mimicking alterations present during tibial metastasis. Engineered tumor models recapitulating these spatiotemporal dynamics will permit assessing the functional relevance of the detected changes to the progression and treatment of breast cancer bone metastasis.


Assuntos
Densidade Óssea , Neoplasias Ósseas , Neoplasias da Mama , Nanopartículas , Tíbia , Microtomografia por Raio-X , Animais , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Durapatita/metabolismo , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Transplante de Neoplasias , Tíbia/diagnóstico por imagem , Tíbia/metabolismo
10.
Data Brief ; 4: 32-3, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26217757

RESUMO

This data article contains high resolution (1.2 µm effective pixel size) lab-based micro-computed tomography (µCT) reconstructed volume data of the femoral mid-shafts from young C57BL/6 mice. This data formed the basis for the analyses of bone structural development in healthy mice, including closed and open porosity as reported in Bortel et al. [1]. The data reveals changes seen in bone material and porosity distribution observed when mouse bones transform from porous scaffolds into solid structures during normal organogenesis.

11.
Acta Biomater ; 22: 92-102, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25829108

RESUMO

During mammalian growth, long bones undergo extensive structural reorganization, transforming from primitive shapes in the limb buds into mature bones. Here we shed light on the steps involved in structural formation of the mineralized tissue in midshafts of C57BL/6 femurs, shortly after birth. By combining 3D micrometer-resolution X-ray microtomography with 2D histology, we study the transformation of the tissue from a partially-mineralized scaffold into a compact bone structure. We identify three growth phases that take place during murine long bone maturation: During a patterning phase (I) mineralized struts form a loosely connected foam-like cortical network. During a transitioning phase (II), the extensive non-mineralized tracts vanish, transforming the foam into a fully continuous mass, by 14 days of age. Concomitantly, closed porosity increases to about ∼ 1.4%, and stays at this level, also found in maturity. During a shaping phase (III), the bones gradually attain their characteristic intricate adult form. Architectured mineral depositioning--first in open foamy scaffolds, and later into solid bone material--is presumably a compromise between the mechanical needs of providing support to the body, and the biological requirements of vascularization and extensive nutritional needs in the early stages of bone formation.


Assuntos
Desenvolvimento Ósseo , Osso e Ossos/anatomia & histologia , Osso e Ossos/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Animais , Calcificação Fisiológica , Fêmur/diagnóstico por imagem , Fêmur/fisiologia , Imageamento Tridimensional , Camundongos Endogâmicos C57BL , Porosidade , Reprodutibilidade dos Testes
12.
Biomaterials ; 31(7): 1955-63, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19969342

RESUMO

The microstructure of enamel like most biological tissues has a hierarchical structure which determines their mechanical behavior. However, current studies of the mechanical behavior of enamel lack a systematic investigation of these hierarchical length scales. In this study, we performed macroscopic uni-axial compression tests and the spherical indentation with different indenter radii to probe enamel's elastic/inelastic transition over four hierarchical length scales, namely: 'bulk enamel' (mm), 'multiple-rod' (10's microm), 'intra-rod' (100's nm with multiple crystallites) and finally 'single-crystallite' (10's nm with an area of approximately one hydroxyapatite crystallite). The enamel's elastic/inelastic transitions were observed at 0.4-17 GPa depending on the length scale and were compared with the values of synthetic hydroxyapatite crystallites. The elastic limit of a material is important as it provides insights into the deformability of the material before fracture. At the smallest investigated length scale (contact radius approximately 20 nm), elastic limit is followed by plastic deformation. At the largest investigated length scale (contact size approximately 2 mm), only elastic then micro-crack induced response was observed. A map of elastic/inelastic regions of enamel from millimeter to nanometer length scale is presented. Possible underlying mechanisms are also discussed.


Assuntos
Esmalte Dentário/fisiologia , Elasticidade/fisiologia , Nanopartículas/química , Tamanho da Partícula , Esmalte Dentário/efeitos dos fármacos , Durapatita/farmacologia , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...